Open Access
Issue |
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
|
|
---|---|---|
Article Number | 01013 | |
Number of page(s) | 15 | |
Section | Reinforcement Learning and Optimization Techniques | |
DOI | https://doi.org/10.1051/itmconf/20257301013 | |
Published online | 17 February 2025 |
- Yang, Y., Tilman, D., Jin, Z., Smith, P., Barrett, C. B., Zhu, Y. G., ... & Zhuang, M. (2024). Climate change exacerbates the environmental impacts of agriculture. Science, 385(6713), eadn3747. [CrossRef] [Google Scholar]
- Kurniawan, D. A., & Santoso, A. Z. (2020). Pengelolaan sampah di daerah sepatan kabupaten tangerang. ADI Pengabdian Kepada Masyarakat, 1(1), 31-36. [Google Scholar]
- Delgado, J. A., Short Jr, N. M., Roberts, D. P., & Vandenberg, B. (2019). Big data analysis for sustainable agriculture on a geospatial cloud framework. Frontiers in Sustainable Food Systems, 3, 54. [CrossRef] [Google Scholar]
- Burkett, V. R., Suarez, A. G., Bindi, M., Conde, C., Mukerji, R., Prather, M. J., ... & Nyambod, E. (2015). Point of departure. In Climate Change 2014 Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects (pp. 169-194). Cambridge University Press. [Google Scholar]
- Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674. [CrossRef] [Google Scholar]
- Sottocornola, G., Nocker, M., Stella, F., & Zanker, M. (2020, March). Contextual multi-armed bandit strategies for diagnosing post-harvest diseases of apple. In Proceedings of the 25th international conference on intelligent user interfaces (pp. 83-87). [Google Scholar]
- Baudry, D., & Gautron, R. Risk-Aware Bandits for Best Crop Management. In ICML 2024 Workshop: Aligning Reinforcement Learning Experimentalists and Theorists. [Google Scholar]
- Tekin, C., & Liu, M. (2012). Online learning of rested and restless bandits. IEEE Transactions on Information Theory, 58(8), 5588-5611. [CrossRef] [MathSciNet] [Google Scholar]
- Lattimore, T., & Szepesvári, C. (2020). Bandit algorithms. Cambridge University Press. [CrossRef] [Google Scholar]
- Gautron, R., Maillard, O. A., Preux, P., Corbeels, M., & Sabbadin, R. (2022). Reinforcement learning for crop management support: Review, prospects and challenges. Computers and Electronics in Agriculture, 200, 107182. [CrossRef] [Google Scholar]
- Uyeh, D. D., Hiablie, S., Park, T., Bassey, B. I., Mallipeddi, R., Woo, S., ... & Ha, Y. (2022). Optimal sensors placement in controlled environment agriculture using a reinforcement learning approach. In 2022 ASABE Annual International Meeting (p. 1). American Society of Agricultural and Biological Engineers. [Google Scholar]
- Stetter, C., Huber, R., & Finger, R. (2024). Agricultural land use modeling and climate change adaptation: A reinforcement learning approach. Applied Economic Perspectives and Policy. [Google Scholar]
- Auer, P. (2002). Finite-time Analysis of the Multiarmed Bandit Problem. [Google Scholar]
- Agrawal, S., & Goyal, N. (2012, June). Analysis of thompson sampling for the multi-armed bandit problem. In Conference on learning theory (pp. 39-1). JMLR Workshop and Conference Proceedings. [Google Scholar]
- Auer, P. (2002). Using upper confidence bounds for exploration in reinforcement learning. Proceedings of the 19th International Conference on Machine Learning (ICML), 21-28. [Google Scholar]
- Garivier, A., & Cappé, O. (2011). The KL-UCB algorithm for bounded stochastic bandits and beyond. Proceedings of the 24th Annual Conference on Learning Theory (COLT), 359-376. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.