Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 01022
Number of page(s) 9
Section Reinforcement Learning and Optimization Techniques
DOI https://doi.org/10.1051/itmconf/20257301022
Published online 17 February 2025
  1. Chen, L., Zhao, Y., & Hu, M. Multimodal Sentiment Analysis and Contextual Bandits for Stock Investment. Journal of Financial Data Science, 9(4), 200-215 (2021) [Google Scholar]
  2. Liu, Q., & Wang, H. Sentiment Propagation and Contextual Bandits in Portfolio Management. Journal of Economic Behavior, 23(1), 89-102 (2022) [CrossRef] [Google Scholar]
  3. Garcia, L., Nguyen, P., & Wang, X. Social Media Sentiment and Stock Market Predictions: An Empirical Study. Journal of Computational Finance, 12(3), 150-165 (2021) [Google Scholar]
  4. Smith, J., Brown, R., & Lee, H. Deep Learning-based Sentiment Analysis for Financial Markets. IEEE Transactions on Knowledge and Data Engineering, 33(5), 1001-1012 (2021) [Google Scholar]
  5. Kim, J., & Park, S. Event-Driven Contextual Bandits for Market Investment. Journal of Market Analysis, 14(3), 300-315 (2020) [Google Scholar]
  6. Johnson, M., & Smith, A. Adaptive Allocation Rules for Financial Environments. Advances in Applied Financial Mathematics, 18(2), 101-115 (2021) [Google Scholar]
  7. Zhou, Y., Zhang, X., & Li, M. Deep Reinforcement Learning for Non-stationary Financial Environments. Journal of Financial Technology, 10(3), 123-145 (2023) [Google Scholar]
  8. Xu, Z., Chen, Y., & Wang, F. Contextual Bandit Algorithms for Financial Portfolio Management. Journal of Financial Studies, 15(2), 87-102 (2022) [Google Scholar]
  9. Taylor, S., & Green, P. (2021). Multidimensional Sentiment Analysis for Contextual Bandits in Stock Market. Financial Data Analysis Review, 13(4), 256-272. [Google Scholar]
  10. Lee, K., & Kim, J. (2020). Robustness of MAB Models in Non-stationary Environments. Journal of Financial Algorithms, 19(3), 211-225. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.