Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 02019
Number of page(s) 6
Section Machine Learning, Deep Learning, and Applications
DOI https://doi.org/10.1051/itmconf/20257302019
Published online 17 February 2025
  1. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature, 521, 436-444 (2015). [CrossRef] [PubMed] [Google Scholar]
  2. H. Zhang, D. Qiu, Y. Feng, J. Liu, Improved U-Net models and its applications in medical image segmentation: A review. Laser & Optoelectronics Progress, 59, 0200005 (2022) [CrossRef] [Google Scholar]
  3. O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomedical image segmentation. In: MICCAIx, 234–241 (2015) [Google Scholar]
  4. A. Halevy, P. Norvig, F. Pereira, The unreasonable effectiveness of data. IEEE Intelligent Systems, 24(2), 8-12 (2009) [CrossRef] [Google Scholar]
  5. D.C. Ciresan, L.M. Gambardella, A. Giusti, J. Schmidhuber, Deep neural networks segment neuronal membranes in electron microscopy images. In: NIPS , 2852–2860 (2012) [Google Scholar]
  6. A. Dosovitskiy, J.T. Springenberg, M. Riedmiller, T. Brox, Discriminative unsupervised feature learning with convolutional neural networks. In: NIPS (2014) [Google Scholar]
  7. Y. Yin, J. Ma, W. Zhang, A., From U-Net to transformer: Progress in the application of hybrid models in medical segmentation. Laser & Optoelectronics Progress, 62, 01 (2024) [Google Scholar]
  8. S. Guan, A.A. Khan, S. Sikdar, P.V. Chitnis, Fully Dense U-Net for 2-D sparse photoacoustic tomography artifact removal. IEEE J. Biomed. Health Inform. 24, 568-576 (2020) [CrossRef] [Google Scholar]
  9. X. Xiao, L. Shen, Z. Luo, S. Li, Weighted Res-U-Net for high-quality retina vessel segmentation. In: 2018 9th International Conference on Information Technology in Medicine and Education (ITME), 327-331 (2018) [Google Scholar]
  10. H. Huang, L. Lin, R. Tong, et al., U-Net 3+: A full-scale connected U-Net for medical image segmentation. In: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1055-1059 (2020) [Google Scholar]
  11. O. Oktay, J. Schlemper, L.L. Folgoc, et al., Attention U-Net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018) [Google Scholar]
  12. J. Zhang, Z. Jiang, J. Dong, et al., Attention gate ResU-Net for automatic MRI brain tumor segmentation. IEEE Access, 8, 58533-58545 (2020) [CrossRef] [Google Scholar]
  13. N. Ibtehaz, M.S. Rahman, MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation. Neural Networks, 121, 74-87 (2020) [CrossRef] [Google Scholar]
  14. Y. Jiang, M. Ye, P. Wang, D. Huang, X. Lu, MRF-IUNet: A multiresolution fusion brain tumor segmentation network based on improved Inception U-Net. Comput. Math. Methods Med. 1-8 (2022) [Google Scholar]
  15. Q.G. Jin, Z.P. Meng, T.D. Pham, et al., DUNet: A deformable network for retinal vessel segmentation. Knowl. Based Syst., 178, 149-156 (2019) [CrossRef] [Google Scholar]
  16. C. Chen, X.P. Liu, M. Ding, et al., 3D dilated multifiber network for real-time brain tumor segmentation in MRI. In: Shen D.G., Liu T.M., Peters T.M., et al. (Eds.), Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, Lecture Notes in Computer Science (Cham: Springer, 2019), 11766, 184-192 (2019) [Google Scholar]
  17. X. Yang, X.Y. Li, X.T. Zhang, et al., Automatic segmentation method of organs threatened by radiotherapy for nasopharyngeal carcinoma based on adaptive U-Net network. J. Southern Med. Univ. 40(11), 8 (2020) [Google Scholar]
  18. S.Q. Wang, Research on MRI image segmentation of brain tumor based on improved U-Net. Master Thesis, Changchun University of Technology (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.