Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 02022
Number of page(s) 8
Section Machine Learning, Deep Learning, and Applications
DOI https://doi.org/10.1051/itmconf/20257302022
Published online 17 February 2025
  1. B. Ren, M. Liu, R. Ding, H. Liu, A survey on 3D skeleton-based action recognition using learning method. Cyborg and Bionic Systems. 5, 0100 (2024) [CrossRef] [Google Scholar]
  2. H. Aguinis, R. K. Gottfredson, H. Joo, Best-practice recommendations for defining, identifying, and handling outliers. Organizational Research Methods. 16, 270-301 (2013) [CrossRef] [Google Scholar]
  3. P. Venkataanusha, Ch. Anuradha, et al., Detecting outliers in high dimensional data sets using Z-score methodology. International Journal of Innovative Technology and Exploring Engineering. 8, 48-53 (2019) [CrossRef] [Google Scholar]
  4. C. S. K. Dash, A. K. Behera, S., Dehuri, et al., An outliers detection and elimination framework in classification task of data mining. Decision Analytics Journal. 6, 100164 (2023) [CrossRef] [Google Scholar]
  5. G. Evangelidis, G. Singh, R. Horaud, Skeletal quads: Human action recognition using joint quadruples, in Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, (2014) [Google Scholar]
  6. R. Vemulapalli, F. Arrate, R. Chellappa, Human action recognition by representing 3D skeletons as points in a Lie group, in Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, (2014) [Google Scholar]
  7. W. Li, Z. Zhang, Z. Liu, Action recognition based on a bag of 3D points, in Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, San Francisco, CA, USA, (2010) [Google Scholar]
  8. X. Yang, Y. Tian, Effective 3D action recognition using EigenJoints. Journal of Visual Communication and Image Representation. 25, 2-11 (2014) [CrossRef] [Google Scholar]
  9. B. Su, H. Wu, M. Sheng, et al., Accurate hierarchical human actions recognition from Kinect skeleton data. IEEE Access. 7, 52532-52541 (2019) [CrossRef] [Google Scholar]
  10. C. Tang, W. Li, P. Wang, et al., Online human action recognition based on incremental learning of weighted covariance descriptors. Information Sciences. 467, 219-237 (2018). [CrossRef] [Google Scholar]
  11. A. Shahroudy, J. Liu, T. T. Ng, et al., NTU RGB+D: A large-scale dataset for 3D human activity analysis, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1010-1019 (2016) [Google Scholar]
  12. A. Zisserman, J. Carreira, K. Simonyan, et al., The Kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017) [Google Scholar]
  13. H. Duan, Y. Zhao, K. Chen, et al., Revisiting skeleton-based action recognition, in Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, (2022) [Google Scholar]
  14. H. Liu, J. Tu, M. Liu, Two-stream 3D convolutional neural network for skeleton-based action recognition. arXiv preprint arXiv:1705.08106 (2017) [Google Scholar]
  15. C. Li, Q. Zhong, D. Xie, et al., Co-occurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation, in Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, (2018) [Google Scholar]
  16. Y. Du, W. Wang, L. Wang, Hierarchical recurrent neural network for skeleton-based action recognition. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, (2015) [Google Scholar]
  17. V. Veeriah, N. Zhuang, G. J. Qi, Differential recurrent neural networks for action recognition, in Proceedings of the IEEE International Conference on Computer Vision (ICCV), (2015) 4041-4049 [Google Scholar]
  18. J. Liu, A. Shahroudy, D. Xu, et al., Spatio-temporal LSTM with trust gates for 3D human action recognition, in Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, October 11-14, 2016. Lecture Notes in Computer Science, 9907, (2016) 816-833 [Google Scholar]
  19. S. Yan, Y. Xiong, D. Lin, Spatial temporal graph convolutional networks for skeleton- based action recognition, in Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), (2018) [Google Scholar]
  20. K. Cheng, Y. Zhang, X. He, et al., Skeleton-based action recognition with shift graph convolutional network, in Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA (2020) [Google Scholar]
  21. M. Li, S. Chen, X. Chen, et al., Actional-structural graph convolutional networks for skeleton-based action recognition, in Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, (2019) [Google Scholar]
  22. L. Shi, Y. Zhang, J. Cheng, et al., Decoupled spatial-temporal attention network for skeleton-based action-gesture recognition, in Proceedings of the Asian Conference on Computer Vision (ACCV), (2020) [Google Scholar]
  23. H. Qiu, B. Hou, B. Ren, et al., Spatio-temporal tuples transformer for skeleton-based action recognition. arXiv preprint arXiv:2201.02849 (2022) [Google Scholar]
  24. F. Shi, C. Lee, L. Qiu, et al., STAR: Sparse transformer-based action recognition. arXiv preprint arXiv:2107.07089 (2021) [Google Scholar]
  25. J. Liu, A. Shahroudy, M. Perez, et al., NTU RGB+D 120: A large-scale benchmark for 3D human activity understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence. 42(10), 2684-2701 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.