Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 02027
Number of page(s) 12
Section Machine Learning, Deep Learning, and Applications
DOI https://doi.org/10.1051/itmconf/20257302027
Published online 17 February 2025
  1. L. Gatys, A. Ecker, M. Bethge, A Neural Algorithm of Artistic Style. Journal of Vision. 16(12), 326-326 (2016) [CrossRef] [Google Scholar]
  2. X. Huang, S. Belongie, Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization, Proceedings of the IEEE International Conference on Computer Vision, (2017), 1510-1519 [Google Scholar]
  3. J.Y. Zhu, T. Park, P. Isola, et al., Unpaired Image-to-Image Translation Using Cycle- Consistent Adversarial Networks. Proceedings of the IEEE International Conference on Computer Vision. 2242-2251 (2017) [Google Scholar]
  4. S. Liu, T. Lin, D. He, et al., AdaAttN: Revisit Attention Mechanism in Arbitrary Neural Style Transfer. Proceedings of the IEEE/CVF International Conference on Computer Vision. 6649-6658 (2021) [Google Scholar]
  5. Y.H. Li, N.Y. Wang, J.Y. Liu, et al., Demystifying Neural Style Transfer. arXiv:1701.01036 (2017) [Google Scholar]
  6. C. Li, M. Wand, Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2479-2486 (2017) [Google Scholar]
  7. A.J. Champandard, Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artworks. arXiv:1603.01768 (2016) [Google Scholar]
  8. J. Liao, Y. Yao, L. Yuan, et al., Visual Attribute Transfer through Deep Image Analogy. arXiv:1705.01088 (2017) [Google Scholar]
  9. S. Gu, C. Chen, J. Liao, et al., Arbitrary Style Transfer with Deep Feature Reshuffle. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 8222-8231 (2018) [Google Scholar]
  10. J. Johnson, A. Alahi, L. Fei-Fei, Perceptual Losses for Real-Time Style Transfer and Super-Resolution. European Conference on Computer Vision. 694-711 (2016) [Google Scholar]
  11. D. Ulyanov, A. Vedaldi, V. Lempitsky, Improved Texture Networks: Maximizing Quality and Diversity in Feedforward Stylization and Texture Synthesis. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 6924-6932 (2018) [Google Scholar]
  12. Y. Li, C. Fang, J. Yang, et al., Diversified Texture Synthesis with Feed-Forward Networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3920-3928 (2017) [Google Scholar]
  13. J.Y. Zhu, T. Park, P. Isola, et al., Unpaired Image-to-Image Translation Using Cycle- Consistent Adversarial Networks. Proceedings of the IEEE International Conference on Computer Vision. 2242-2251 (2017) [Google Scholar]
  14. V. Dumoulin, J. Shlens, M. Kudlur, A Learned Representation for Artistic Style. arXiv:1610.07629 (2016) [Google Scholar]
  15. D. Chen, L. Yuan, J. Liao, N. Yu, G. Hua, StyleBank: An Explicit Representation for Neural Image Style Transfer. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1897-1906 (2017) [Google Scholar]
  16. H. Zhang, K. Dana, Multi-Style Generative Network for Real-Time Transfer. arXiv:1703.06953 (2017) [Google Scholar]
  17. P.A. Qiao, J.W. Li, J.L. Cao, Animation of Image Style in Multi-Channel CartoonGAN. Application Research of Computers. 38(11), 3517-3520 (2021) [Google Scholar]
  18. T.Q. Chen, M. Schmidt, Fast Patch-Based Style Transfer of Arbitrary Style. Proceedings of the NIPS Workshop on Constructive Machine Learning (2016) [Google Scholar]
  19. Y. Li, C. Fang, J. Yang, et al., Universal Style Transfer via Feature Transforms. Advances in Neural Information Processing Systems. 386-396 (2017) [Google Scholar]
  20. S. Bagwari, K. Choudhary, S. Raikwar, P.S. Rana, S. Mighlani, A Review: The Study and Analysis of Neural Style Transfer in Image. In: Tistarelli, M., Dubey, S.R., Singh, S.K., Jiang, X. (eds) Computer Vision and Machine Intelligence. Lecture Notes in Networks and Systems, vol 586, Springer, Singapore. https://doi.org/10.1007/978-981- 19-7867-8_17 (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.