Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 03006
Number of page(s) 7
Section Blockchain, AI, and Technology Integration
DOI https://doi.org/10.1051/itmconf/20257303006
Published online 17 February 2025
  1. Y. Zhang, J. Sun, L. Meng, et al., Sentiment analysis of E-commerce text reviews based on sentiment dictionary, in Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), IEEE, (2020), 1346-1350 [Google Scholar]
  2. K. Jia, Z. Li, Chinese micro-blog sentiment classification based on emotion dictionary and semantic rules, in Proceedings of the 2020 International Conference on Computer Information and Big Data Applications (CIBDA), (2020), 309-312 [Google Scholar]
  3. S. Bagherzadeh, S. Shokouhyar, H. Jahani, et al., A generalizable sentiment analysis method for creating a hotel dictionary: using big data on TripAdvisor hotel reviews. J. Hosp. Tour. Technol. 12(2), 210-238 (2021) [Google Scholar]
  4. H. Rahman, J. Tariq, M. A. Masood, et al., Multi-tier sentiment analysis of social media text using supervised machine learning, Comput. Mater. Contin. 74, 5527–5543 (2023) [Google Scholar]
  5. H. Cam, A. V. Cam, U. Demirel, et al., Sentiment analysis of financial Twitter posts on Twitter with the machine learning classifiers, Heliyon, 10(1), e23784 (2024) [Google Scholar]
  6. S. H. Biradar, J. V. Gorabal, G. Gupta, Machine learning tool for exploring sentiment analysis on Twitter data, Mater. Today: Proc. 56, 1927–1934 (2022) [CrossRef] [Google Scholar]
  7. N. Pavitha, V. Pungliya, A. Raut, et al., Movie recommendation and sentiment analysis using machine learning, Global Transitions Proc. 3(1), 279–284 (2022) [CrossRef] [Google Scholar]
  8. M. E. Basiri, S. Nemati, M. Abdar, et al., ABCDM: An attention-based bidirectional CNN-RNN deep model for sentiment analysis, Future Gener. Comput. Syst. 115, 279–294 (2021) [CrossRef] [Google Scholar]
  9. A. Assiri, A. Gumaei, F. Mehmood, et al., DeBERTa-GRU: Sentiment analysis for large language model, Computers, Mater. & Contin. 79(3), 21517-21525 (2024) [Google Scholar]
  10. M. Rhanoui, M. Mikram, S. Yousfi, et al., A CNN-BiLSTM model for document-level sentiment analysis, Mach. Learn. Knowl. Extract. 1(3), 832–847 (2019) [CrossRef] [Google Scholar]
  11. W. Liao, B. Zeng, X. Yin, et al., An improved aspect-category sentiment analysis model for text sentiment analysis based on RoBERTa, Appl. Intell. 51, 3522–3533 (2021) [CrossRef] [Google Scholar]
  12. H. Hu, M. Feng, M. Cao, et al., Multimodal social sentiment analysis based on semantic relevance, J. Beijing Univ. Aeronaut. Astronaut. 47(3), 469–477 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.