Open Access
Issue
ITM Web Conf.
Volume 73, 2025
International Workshop on Advanced Applications of Deep Learning in Image Processing (IWADI 2024)
Article Number 03016
Number of page(s) 10
Section Blockchain, AI, and Technology Integration
DOI https://doi.org/10.1051/itmconf/20257303016
Published online 17 February 2025
  1. S. Rotz, E. Duncan, M. Small, J. Botschner, R. Dara, I. Mosby, & E. D. Fraser, The politics of digital agricultural technologies: a preliminary review. Sociologia ruralis, 59(2), 203-229. (2019) [CrossRef] [Google Scholar]
  2. L. C. Ngugi, M. Abelwahab, & M. Abo-Zahhad, Recent advances in image processing techniques for automated leaf pest and disease recognition–A review. Information processing in agriculture, 8(1), 27-51. (2021) [CrossRef] [Google Scholar]
  3. M. Henila, & P. Chithra, Segmentation using fuzzy cluster‐based thresholding method for apple fruit sorting. IET Image Processing, 14(16), 4178-4187. (2020) [CrossRef] [Google Scholar]
  4. J. D. Tournier, R. Smith, D. Raffelt, R. Tabbara, T. Dhollander, M. Pietsch, & A. Connelly, MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage, 202, 116137. (2019) [CrossRef] [Google Scholar]
  5. S. Fan, X. Liang, W. Huang, V. J. Zhang, Q. Pang, X. He, & C. Zhang, Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOV4 network. Computers and Electronics in Agriculture, 193, 106715. (2022) [CrossRef] [Google Scholar]
  6. T. N. Syed, I. A. Lakhiar, & F. A. Chandio, Machine vision technology in agriculture: A review on the automatic seedling transplanters. International Journal of Multidisciplinary Research and Development, 6(12), 79-88. (2019) [Google Scholar]
  7. A. Taner, M. T. Mengstu, K. Ç. Selvi, H. Duran, Ö. Kabaş, İ. Gür, & N. E. Gheorghiță, Multiclass apple varieties classification using machine learning with histogram of oriented gradient and color moments. Applied Sciences, 13(13), 7682. (2023) [CrossRef] [Google Scholar]
  8. C. Zhang, J. Valente, L. Kooistra, L. Guo, & W. Wang, Orchard management with small unmanned aerial vehicles: A survey of sensing and analysis approaches. Precision agriculture, 22(6), 2007-2052. (2021) [CrossRef] [Google Scholar]
  9. W. Jia, Y. Zhang, J. Lian, Y. Zheng, D. Zhao, & C. Li, Apple harvesting robot under information technology: A review. International Journal of Advanced Robotic Systems, 17(3), 1729881420925310. (2020) [CrossRef] [MathSciNet] [Google Scholar]
  10. X. Gao, S. Li, X. Su, Y. Li, L. Huang, W. Tang, & M. Dong, Application of Advanced Deep Learning Models for Efficient Apple Defect Detection and Quality Grading in Agricultural Production. Agriculture, 14(7), 1098. (2024) [CrossRef] [Google Scholar]
  11. C. Chen, B. Li, J. Liu, T. Bao, & N. Ren, Monocular positioning of sweet peppers: An instance segmentation approach for harvest robots. Biosystems Engineering, 196, 15-28. (2020) [CrossRef] [Google Scholar]
  12. P. Pathmanaban, B. K. Gnanavel, & S. S. Anandan, Recent application of imaging techniques for fruit quality assessment. Trends in Food Science & Technology, 94, 32-42. (2019) [CrossRef] [Google Scholar]
  13. B. Li, & W. Lu, Application of image processing technology in the digital media era in the design of integrated materials painting in installation art. Multimedia Tools and Applications, 83(18), 54211-54228. (2024) [Google Scholar]
  14. XD. Ma, G. Liu, W. Zhou, et al., Apple recognition based on fuzzy neural network and quantum genetic algorithm. Trans Chin Soc Agric; 44(12): 227–232. (2013) [Google Scholar]
  15. Z. Han, M. Jian, & G. G. Wang, ConvUNeXt: An efficient convolution neural network for medical image segmentation. Knowledge-based systems, 253, 109512. (2022) [CrossRef] [Google Scholar]
  16. U. Shafi, R. Mumtaz, J. García -Nieto, S. A. Hassan, S. A. R. Zaidi, & N. Iqbal, Precision agriculture techniques and practices: From considerations to applications. Sensors, 19(17), 3796. (2019) [CrossRef] [Google Scholar]
  17. W. Jia, Y. Tian, R. Luo, Z. Zhang, J. Lian, & Y. Zheng, Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot. Computers and Electronics in Agriculture, 172, 105380. (2020) [CrossRef] [Google Scholar]
  18. H. Song, C., Zhang, J., Pan, X. Yin, & Y. Zhuang, Segmentation and reconstruction of overlappedapple images based on convex hull. Transactions of the Chinese Society of Agricultural Engineering, 29(3), 163-168. (2013) [Google Scholar]
  19. N. M. Nasrabadi, Hyperspectral target detection: An overview of current and future challenges. IEEE Signal Processing Magazine, 31(1), 34-44. (2013) [Google Scholar]
  20. J. Rakun, D. Stajnko, & D. Zazula, Detecting fruits in natural scenes by using spatial- frequency based texture analysis and multiview geometry. Computers and Electronics in Agriculture, 76(1), 80-88. (2011) [CrossRef] [Google Scholar]
  21. L. Qiang, C. Jianrong, L. Bin, D. Lie, & Z. Yajing, Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine. International Journal of Agricultural and Biological Engineering, 7(2), 115-121. (2014) [Google Scholar]
  22. W. Jia, S. Mou, J. Wang, X. Liu, Y. Zheng, J. Lian, & D. Zhao, Fruit recognition based on pulse coupled neural network and genetic Elman algorithm application in apple harvesting robot. International Journal of Advanced Robotic Systems, 17(1), 1729881419897473. (2020) [CrossRef] [Google Scholar]
  23. W. Jia, D. Zhao, X. Liu, S. Tang, C. Ruan, & W. Ji, Apple recognition based on K- means and GA-RBF-LMS neural network applicated in harvesting robot. Transactions of the Chinese Society of Agricultural Engineering, 31(18), 175-183. (2015) [Google Scholar]
  24. T. Georgiou, Y. Liu, W. Chen, & M. Lew, A survey of traditional and deep learning- based feature descriptors for high dimensional data in computer vision. International Journal of Multimedia Information Retrieval, 9, 135-170. (2020) [CrossRef] [Google Scholar]
  25. W. Mao, B. Ji, J. Zhan, X. Zhang, & X. Hu, Apple location method for the apple harvesting robot. In 2009 2nd International Congress on Image and Signal Processing. IEEE. October (2009), pp. 1-5 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.