Open Access
Issue
ITM Web Conf.
Volume 74, 2025
International Conference on Contemporary Pervasive Computational Intelligence (ICCPCI-2024)
Article Number 01004
Number of page(s) 11
Section Artificial Intelligence and Machine Learning Applications
DOI https://doi.org/10.1051/itmconf/20257401004
Published online 20 February 2025
  1. Akhter T., Islam M.A., Islam S. Artificial neural network based covid19 suspected area identification. J Eng Adv 2020;1:188–194. [CrossRef] [Google Scholar]
  2. Aljaaf A.J., Al-Jumeily D., Haglan H.M., et al. Early prediction of chronic kidney disease using machine learning supported by predictive analytics. 2018 IEEE Congress on Evolutionary Computation (CEC). IEEE; 2018. p. 1–9. [Google Scholar]
  3. Almasoud M., Ward T.E. Detection of chronic kidney disease using machine learning algorithms having least number of predictors. Int J Soft Comput Appl 2019;10. [Google Scholar]
  4. Ani R., Sasi G., Sankar U.R., Deepa O. Decision support system for diagnosis and prediction of chronic renal failure using random subspace classification. 2016 International Conference on Advances Computing, Communications and Informatics(ICACCI). IEEE; 2016. p. 1287–1292. Arora, M., Sharma, E.A., 2016. Chronic kidney disease detection by analyzing medical datasets in weka. International Journal of Computer of machine learning Algorithms. New advances in machine learning 3, 19-48. [CrossRef] [Google Scholar]
  5. Arora M., Sharma E.A. Chronic kidney disease detection by analyzing medical datasets in weka. Int J Comput Mach Learn Algor New Adv Mach Learn 2016;3:19–48. [Google Scholar]
  6. Banik S., Ghosh A. Prevalence of chronic kidney disease in Bangladesh: a systematic review and meta-analysis. Int Urol Nephrol 2021;53:713–718. [CrossRef] [Google Scholar]
  7. Charleonnan A., Fufaung T., Niyomwong T., Chokchueypattanakit W., Suwannawach S., Ninchawee N. Predictive analytics for chronic kidney disease using machine learning techniques. 2016 Management and Innovation Technology International Conference (MITicon). IEEE; 2016. pp. MIT-80. [Google Scholar]
  8. Chen Z., Zhang X., Zhang Z. Clinical risk assessment of patients with chronic kidney disease by using clinical data and multivariate models. Int Urol Nephrol 2016;48:2069–2075. [CrossRef] [Google Scholar]
  9. Chittora P., Chaurasia S., Chakrabarti P., et al. Prediction of chronic kidney disease-a From machine learning perspective. IEEE Access 2021;9:17312–17334. [CrossRef] [Google Scholar]
  10. Cueto-Manzano A.M., Corte’s-Sanabria L., Martinez-Ramirez H.R., Rojas-Campos E., Go’mezNavarro B., Castillero-Manzano M. Prevalence of chronic kidney disease in an adult population. Arch Med Res 2014;45:507–513. [CrossRef] [Google Scholar]
  11. Dua D., Graff C. UCI Machine Learning Repository. URL: http://archive.ics.uci.edu/ml 2017. [Google Scholar]
  12. Eroglu K., Palabas, T. The impact on the classification performance of the combined use of Classification techniques that are diversified and also diversified ensemble approaches in the context of chronic kidney disease. 2016 National Conference on Electrical, Electronics and Biomedical Engineering (ELECO). IEEE; 2016. p. 512–516. [Google Scholar]
  13. Fatima M., Pasha M., Survey of machine learning algorithms for disease diagnostic. J Intel Learn Syst Appl 2017;9(01):1. [Google Scholar]
  14. Gudeti B., Mishra S., Malik S., Fernandez T.F., Tyagi A.K., Kumari S. A novel approach to predict chronic kidney disease using machine learning algorithms. 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA). IEEE; 2020. p. 1630–1635. [CrossRef] [Google Scholar]
  15. Heung M., Chawla L.S. Predicting progression to chronic kidney disease after recovery from acute kidney injury. Curr Opin Nephrol Hypertens 2012;21:628–634. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.