Open Access
Issue |
ITM Web Conf.
Volume 74, 2025
International Conference on Contemporary Pervasive Computational Intelligence (ICCPCI-2024)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 10 | |
Section | Artificial Intelligence and Machine Learning Applications | |
DOI | https://doi.org/10.1051/itmconf/20257401006 | |
Published online | 20 February 2025 |
- Singh, M., Angurala, M., & Bala, M. (2020). Bone Tumour detection Using Feature Extraction with Classification by Deep Learning Techniques. Research Journal of Computer Systems and Engineering, 1(1), 23–27. [Google Scholar]
- Do, N. T., Jung, S. T., Yang, H. J., & Kim, S. H. (2020). End-to-end bone tumor segmentation and classification from X-ray images by using multi-level Seg-Unet model. 47(2), 170–179. [Google Scholar]
- Zhan, X., Liu, J., Long, H., Zhu, J., Tang, H., Gou, F., & Wu, J. (2023). An ntelligent auxiliary framework for bone malignant tumor lesion segmentation in medical image analysis. Diagnostics, 13(2), 223. [CrossRef] [Google Scholar]
- BaidyaKayal, E., Kandasamy, D., Sharma, R., Bakhshi, S., & Mehndiratta, A. (2020). Segmentation of osteosarcoma tumor using diffusion weighted MRI: a comparative study using nine segmentation algorithms. Signal, Image and Video Processing, 14, 727–735. [CrossRef] [Google Scholar]
- Anand, D., Khalaf, O. I., Hajjej, F., Wong, W. K., Pan, S. H., & Chandra, G. R. (2023). Optimized Swarm Enabled Deep learning technique for bone tumor detection using Histopathological Image. SINERGI, 27(8), 451–466. [CrossRef] [Google Scholar]
- Shouman, M., Rahouma, K. H., & Hamed, H. F. A. (2024). A deep learning-based system for accurate diagnosis of pelvic bone tumors. Bulletin of Electrical Engineering and Informatics, 13(3), 1802–1813. [CrossRef] [Google Scholar]
- Ponlatha, D., Aravindhan, P., & Boovesh, L. (2022). Deep learning based classification of bone tumors using image segmentation. Periodico di Mineralogia, 3, 91–311. [Google Scholar]
- Giradkar, M. B., & Bodne, M. N. (2020). Bone Tumor Detection using Classification in Deep Learning using Image Processing in MATLAB. Bone, 7(06). [Google Scholar]
- Georgeanu, V. A., Mămuleanu, M., Ghiea, S., & Selişteanu, D. (2022). Malignant bone tumors diagnosis using magnetic resonance imaging based on deep learning algorithms. Medicina, 58(5), 636. [CrossRef] [Google Scholar]
- Shrivastava, D., Sanyal, S., Maji, A. K., & Kandar, D. (2020). Bone cancer detection using machine learning techniques. In Smart healthcare for disease diagnosis and prevention (pp. 175–183). Academic Press. [CrossRef] [Google Scholar]
- Sharma, A., Yadav, D. P., Garg, H., Kumar, M., Sharma, B., & Koundal, D. (2021). Bone cancer detection using feature extraction based machine learning model. Computational and Mathematical Methods in Medicine, 2021. [Google Scholar]
- Eweje, F. R., Bao, B., Wu, J., Dalal, D., Liao, W. H., He, Y., & Bai, H. X. (2021). Deep learning for classification of bone lesions on routine MRI. EBioMedicine, 68. [Google Scholar]
- Altameem, T. (2020). Fuzzy rank correlation-based segmentation method and deep neural network for bone cancer identification. Neural Computing and Applications, 32(3), 805–815. [CrossRef] [Google Scholar]
- Zhou, X., Wang, H., Feng, C., Xu, R., He, Y., Li, L., & Tu, C. (2022). Emerging applications of deep learning in bone tumors: current advances and challenges. Frontiers in Oncology, 12, 908873. [CrossRef] [Google Scholar]
- Ye, Q., Yang, H., Lin, B., Wang, M., Song, L., Xie, Z., & Zhao, Y. (2023). Automatic detection, segmentation, and classification of primary bone tumors and bone infections using an ensemble multi-task deep learning framework on multi-parametric MRIs: a multi- center study. European Radiology, 1–13. [Google Scholar]
- Gawade, S., Bhansali, A., Patil, K., & Shaikh, D. (2023). Application of the convolutional neural networks and supervised deep-learning methods for osteosarcoma bone cancer detection. Healthcare Analytics, 3, 100153. [CrossRef] [Google Scholar]
- Shukla, A., & Patel, A. (2020). Bone cancer detection from X-ray and MRI images through image segmentation techniques. Int. J. Recent Technol. Eng.(IJRTE), 8(6), 273–278. [CrossRef] [Google Scholar]
- Paranavithana, I. R., Stirling, D., Ros, M., & Field, M. (2023). Systematic review of tumor segmentation strategies for bone metastases. Cancers, 15(6), 1750. [CrossRef] [Google Scholar]
- Do, N. T., Jung, S. T., Yang, H. J., & Kim, S. H. (2021). Multi-level seg-unet model with global and patch-based X-ray images for knee bone tumor detection. Diagnostics, 11(4), 691. [CrossRef] [Google Scholar]
- Anand, D., Arulselvi, G., Balaji, G. N., & Chandra, G. R. (2022). A deep convolutional extreme machine learning classification method to detect bone cancer from histopathological images. International Journal of Intelligent Systems and Applications in Engineering, 10(4), 39–47. [Google Scholar]
- Belal, S. L., Sadik, M., Kaboteh, R., Enqvist, O., Ulén, J., Poulsen, M. H., & Trägårdh, E. (2019). Deep learning for segmentation of 49 selected bones in CT scans: first step in automated PET/CT-based 3D quantification of skeletal metastases. European journal of radiology, 113, 89–95. [CrossRef] [Google Scholar]
- La Rosa, F. (2017). A deep learning approach to bone segmentation in CT scans. [Google Scholar]
- Gordienko, Y., Gang, P., Hui, J., Zeng, W., Kochura, Y., Alienin, O., & Stirenko, S. (2019). Deep learning with lung segmentation and bone shadow exclusion techniques for chest X-ray analysis of lung cancer. In Advances in Computer Science for Engineering and Education 13 (pp. 638–647). Springer International Publishing. [CrossRef] [Google Scholar]
- Wuestemann, J., Hupfeld, S., Kupitz, D., Genseke, P., Schenke, S., Pech, M., & Grosser, O. S. (2020). Analysis of bone scans in various tumor entities using a deeplearning-based artificial neural network algorithm—evaluation of diagnostic performance. Cancers, 12(9), 2654. [CrossRef] [Google Scholar]
- Li, J., Li, S., Li, X., Miao, S., Dong, C., Gao, C., & Cui, J. (2023). Primary bone tumor detection and classification in full-field bone radiographs via YOLO deep learning model. European Radiology, 33(6), 4237–4248. [Google Scholar]
- Marwa, F., Zahzah, E. H., Bouallegue, K., & Machhout, M. (2022). Deep learning based neural network application for automatic ultrasonic computed tomographic bone image segmentation. Multimedia Tools and Applications, 81(10), 13537–13562. [CrossRef] [Google Scholar]
- Saranya, A., Kottursamy, K., AlZubi, A. A., & Bashir, A. K. (2022). Analyzing fibrous tissue pattern in fibrous dysplasia bone images using deep R-CNN networks for segmentation. Soft Computing, 26(16), 7519–7533. [CrossRef] [Google Scholar]
- vonSchacky, C. E., Wilhelm, N. J., Schäfer, V. S., Leonhardt, Y., Jung, M., Jungmann, P. M., & Gersing, A. S. (2022). Development and evaluation of machine learning models based on X-ray radiomics for the classification and differentiation of malignant and benign bone tumors. European radiology, 32(9), 6247–6257. [CrossRef] [Google Scholar]
- Hussain, D., Naqvi, R. A., Loh, W. K., & Lee, J. (2021). Deep learning in DXA image segmentation. Computers, Materials & Continua, 66(3), 2587–2598. [CrossRef] [Google Scholar]
- Hsieh, T. C., Liao, C. W., Lai, Y. C., Law, K. M., Chan, P. K., & Kao, C. H. (2021). Detection of bone metastases on bone scans through image classification with contrastive learning. Journal of Personalized Medicine, 11(12), 1248. [CrossRef] [Google Scholar]
- Arunachalam, H. B., Mishra, R., Daescu, O., Cederberg, K., Rakheja, D., Sengupta, A., & Leavey, P. (2019). Viable and necrotic tumor assessment from whole slide images of osteosarcoma using machine- learning and deep-learning models. PloS one, 14(4), e0210706. [CrossRef] [Google Scholar]
- Lingappa, E., & Parvathy, L. R. (2023). Deep learning-based active contour technique with bagging and boosting algorithms hybrid approach for detecting bone Cancer from Mri scan images. Multimedia Tools and Applications, 82(23), 36363–36377. [CrossRef] [Google Scholar]
- Li, X., Ding, R., Wang, Q., Yang, Z., Duan, X., Sun, Y., & Liu, A. (2024). EENet: Application of convolutional neural network-based deep learning methods in bone tumor pathological diagnosis. International Journal of Imaging System and Technology, 34(3), e23082. [CrossRef] [Google Scholar]
- Sampath, K., Rajagopal, S., & Chintanpalli, A. (2024). A comparative analysis of CNNbased deep learning architectures for early diagnosis of bone cancer using CT images. Scientific Reports, 14(1), 2144. [CrossRef] [Google Scholar]
- Phan, T. C. (2024). Tumor Segmentation and Classification Using Machine Learning Approaches. International Journal of Data Informatics and Intelligent Computing, 3(1), 1–11. [CrossRef] [Google Scholar]
- Papandrianos, N., Papageorgiou, E., Anagnostis, A., & Papageorgiou, K. (2020). Bone metastasis classification using whole body images from prostate cancer patients based on convolutional neural networks application. PloS one, 15(8), e0237213. [CrossRef] [Google Scholar]
- Schnider, E., Horváth, A., Rauter, G., Zam, A., Müller-Gerbl, M., & Cattin, P. C. (2020). 3d segmentation networks for excessive numbers of classes: Distinct bone segmentation in upper bodies. In Machine Learning in Medical Imaging: 11th International Workshop, MLMI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings 11 (pp. 40–49). Springer International Publishing. [MathSciNet] [Google Scholar]
- Xu, L., Tetteh, G., Lipkova, J., Zhao, Y., Li, H., Christ, P., & Menze, B. H. (2018). Automated whole-body bone lesion detection for multiple myeloma on 68 Ga-Pentixafor PET/CT imaging using deep learning methods. Contrast media & molecular imaging, 2018. [Google Scholar]
- Hussain, D., Al-Antari, M. A., Al-Masni, M. A., Han, S. M., & Kim, T. S. (2018). Femur segmentation in DXA imaging using a machine learning decision tree. Journal of X- ray Science and Technology, 26(5), 727–746. [Google Scholar]
- Isinkaye, F. O., Aluko, A. G., & Jongbo, O. A. (2021). Segmentation of medical X-ray bone image using different image processing techniques. Proc. IJIGSP, 13(5), 27–40. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.