Open Access
Issue
ITM Web Conf.
Volume 74, 2025
International Conference on Contemporary Pervasive Computational Intelligence (ICCPCI-2024)
Article Number 01008
Number of page(s) 12
Section Artificial Intelligence and Machine Learning Applications
DOI https://doi.org/10.1051/itmconf/20257401008
Published online 20 February 2025
  1. K. Ojala, M. Vaarasmaki, K. Makikallio, M. Valkama, and A. Tekay “A comparison of intrapartum automated fetal ectrocardiography and conventional cardiotocographya randomised controlled study”, BJOG: an international journal of obstetrics and gynaecology, vol. 113, no. 4, pp. 419–423, 2006. [CrossRef] [Google Scholar]
  2. Chudacek, V., et al. “Evaluation of feature subsets for classification of cardiotocographic recordings.” Computers in Cardiology, 2008. IEEE, 2008. [Google Scholar]
  3. Géron, A., 2022. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly Media, Inc.: Sebastopol. [Google Scholar]
  4. D. Devane, J. G. Lalor, S. Daly, W. McGuire, and V. Smith, “Cardiotocography versus intermittent auscultation of fetal heart on admission to labour ward for assessment of fetal wellbeing”, Cochrane Database Syst Rev, vol. 2, 2012. [Google Scholar]
  5. Han, J., Kamber, M., 2011. Data mining: Con-cepts and techniques (3rd ed.) Morgan Kau-mann Publisher: Burlington. [Google Scholar]
  6. A. Liaw and M. Wiener, “Classification and regression by random forest”, R Newslett., vol. 2, no. 3, pp. 18–22, 2002. [Google Scholar]
  7. R. Zeng, Y. Lu, S. Long, C. Wang, and J. Bai, “Cardiotocography signal abnormality classification using time-frequency features and ensemble costsensitive SVM classifier,” Comput. Biol. Med., 2021, DOI: 10.1016/j.compbiomed.2021.104218. [Google Scholar]
  8. Shahad Nidhal, M. A. Mohd Ali and Hind Najah, “A novel cardiotocography fetal heart rate baseline estimation algorithm”, Scientific Research and Essays Vol. 5(24), pp. 4002–4010, 18 December, 2010. [Google Scholar]
  9. Mennickent D., Rodríguez A., Opazo M.C., Riedel C.A., Castro E., Eriz-Salinas A., Appel-Rubio J., Aguayo C., Damiano A.E., Guzmán-Gutiérrez E., Araya J. Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications. Front Endocrinol (Lausanne). 2023 May 19;14:1130139. DOI: 10.3389/fendo.2023.1130139. [CrossRef] [Google Scholar]
  10. Chandana, C., Neha, P.N., Nisarga, S.M., Thanvi, P., Balarengadurai, C. (2023). Fetal Health Prediction Using Machine Learning Approach. In: Kumar, A., Mozar, S., Haase, J. (eds) Advances in Cognitive Science and Communications. ICCCE 2023. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-19-8086-288 [Google Scholar]
  11. Chandana, C., et al. “Fetal Health Prediction Using Machine Learning Approach.” International Conference on Communications and Cyber Physical Engineering 2018. Singapore: Springer Nature Singapore, 2023. [Google Scholar]
  12. Nagabotu, Vimala, and Anupama Namburu. “Fetal Health Classification using LightGBM with Grid Search Based Hyper Parameter Tuning.” Recent Patents on Engineering 19.1 (2025): E030723218386. [CrossRef] [Google Scholar]
  13. Olayemi, O. C., and O. O. Olasehinde. “Machine Learning Prediction of Fetal Health Status from Cardiotocography Examination in Developing Healthcare Contexts”. Journal of Computer Science Research, vol. 6, no. 1, Jan. 2024, pp. 4353, DOI: 10.30564/jcsr.v6i1.6242. [CrossRef] [Google Scholar]
  14. Gat, Yigal. “Fetal monitoring system and method.” U.S. Patent No. 5,954,663. 21 Sep. 1999. [Google Scholar]
  15. Lu, Yu, et al. “Prediction of fetal weight at varying gestational age in the absence of ultrasound examination using ensemble learning.” Artificial intelligence in medicine 102(2020): 101748. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.