Open Access
Issue
ITM Web Conf.
Volume 74, 2025
International Conference on Contemporary Pervasive Computational Intelligence (ICCPCI-2024)
Article Number 01010
Number of page(s) 10
Section Artificial Intelligence and Machine Learning Applications
DOI https://doi.org/10.1051/itmconf/20257401010
Published online 20 February 2025
  1. Fattal, R. (2008). Single image dehazing. SIGGRAPH. [Google Scholar]
  2. He, K., Sun, J., & Tang, X. (2010). Single image haze removal using dark channel prior. IEEE transactions on pattern analysis and machine intelligence, 33(12), 2341–2353. [Google Scholar]
  3. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., & Wang, Z. (2018). Benchmarking single-image dehazing and beyond. IEEE Transactions on Image Processing, 28(1), 492–505. [Google Scholar]
  4. Zhu, M., He, B., & Wu, Q. (2017). Single image dehazing based on dark channel prior and energy minimization. IEEE Signal Processing Letters, 25(2), 174–178. [Google Scholar]
  5. Ju, M., Zhang, D., & Wang, X. (2017). Single image dehazing via an improved atmospheric scattering model. The Visual Computer, 33, 1613–1625. [CrossRef] [Google Scholar]
  6. Li, L., Dong, Y., Ren, W., Pan, J., Gao, C., Sang, N., & Yang, M. H. (2019). Semisupervised image dehazing. IEEE Transactions on Image Processing, 29, 27662779. [Google Scholar]
  7. Li, J., Li, G., & Fan, H. (2018). Image dehazing using residual-based deep CNN. IEEE Access, 6, 26831–26842. [CrossRef] [Google Scholar]
  8. Du, Y., & Li, X. (2018). Recursive deep residual learning for single image dehazing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 730–737). [Google Scholar]
  9. Ren, W., Ma, L., Zhang, J., Pan, J., Cao, X., Liu, W., & Yang, M. H. (2018). Gated fusion network for single image dehazing. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3253–3261). [Google Scholar]
  10. Yang, D., & Sun, J. (2018). Proximal dehaze-net: A prior learning-based deep network for single image dehazing. In Proceedings of the european conference on computer vision (ECCV) (pp. 702–717). [Google Scholar]
  11. Chen, D., He, M., Fan, Q., Liao, J., Zhang, L., Hou, D., … & Hua, G. (2019, January). Gated context aggregation network for image dehazing and deraining. In 2019 IEEE winter conference on applications of computer vision (WACV) (pp. 1375–1383). IEEE. [CrossRef] [Google Scholar]
  12. Liu, Y., Pan, J., Ren, J., & Su, Z. (2019). Learning deep priors for image dehazing. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 2492–2500). [Google Scholar]
  13. Liu, Z., Xiao, B., Alrabeiah, M., Wang, K., & Chen, J. (2019). Single image dehazing with a generic model-agnostic convolutional neural network. IEEE Signal Processing Letters, 26(6), 833–837. [CrossRef] [Google Scholar]
  14. Liu, X., Ma, Y., Shi, Z., & Chen, J. (2019). Griddehazenet: Attention-based multiscale network for image dehazing. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 7314–7323). [Google Scholar]
  15. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., & Yang, M. H. (2016). Single image dehazing via multi-scale convolutional neural networks. In Computer Vision- ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part II 14 (pp. 154–169). Springer International Publishing. [CrossRef] [Google Scholar]
  16. Luan, Z., Shang, Y., Zhou, X., Shao, Z., Guo, G., & Liu, X. (2017). Fast single image dehazing based on a regression model. Neurocomputing, 245, 10–22. [CrossRef] [Google Scholar]
  17. Wang, W., Yuan, X., Wu, X., & Liu, Y. (2017). Fast image dehazing method based on linear transformation. IEEE Transactions on Multimedia, 19(6), 11421155. [Google Scholar]
  18. Li, R., Pan, J., Li, Z., & Tang, J. (2018). Single image dehazing via conditional generative adversarial network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 8202–8211). [Google Scholar]
  19. Engin, D., Genç, A., & Kemal Ekenel, H. (2018). Cycle-dehaze: Enhanced cyclegan for single image dehazing. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 825–833). [Google Scholar]
  20. Li, B., Peng, X., Wang, Z., Xu, J., & Feng, D. (2017). Aod-net: All-in-one dehazing network. In Proceedings of the IEEE international conference on computer vision (pp. 4770–4778). [Google Scholar]
  21. Ren, W., Pan, J., Zhang, H., Cao, X., & Yang, M. H. (2020). Single image dehazing via multi-scale convolutional neural networks with holistic edges. International Journal of Computer Vision, 128, 240–259. [CrossRef] [Google Scholar]
  22. Xiao, C., & Gan, J. (2012). Fast image dehazing using guided joint bilateral filter. The Visual Computer, 28, 713–721. [CrossRef] [Google Scholar]
  23. Schaul, L., Fredembach, C., & Süsstrunk, S. (2009, November). Color image dehazing using the near-infrared. In 2009 16th IEEE International Conference on Image Processing (ICIP) (pp. 1629–1632). IEEE. [Google Scholar]
  24. Carr, P., & Hartley, R. (2009, December). Improved single image dehazing using geometry. In 2009 Digital Image Computing: Techniques and Applications (pp. 103–110). IEEE. [CrossRef] [Google Scholar]
  25. Ancuti, C. O., Ancuti, C., & Bekaert, P. (2010, September). Effective single image dehazing by fusion. In 2010 IEEE international conference on image processing (pp. 3541–3544). IEEE. [CrossRef] [Google Scholar]
  26. Fang, S., Zhan, J., Cao, Y., & Rao, R. (2010, September). Improved single image dehazing using segmentation. In 2010 IEEE International Conference on Image Processing (pp. 3589–3592). IEEE. [CrossRef] [Google Scholar]
  27. Carlevaris-Bianco, N., Mohan, A., & Eustice, R. M. (2010, September). Initial results in underwater single image dehazing. In Oceans 2010 Mts/IEEE Seattle (pp. 1–8). IEEE. [Google Scholar]
  28. Kim, J. H., Sim, J. Y., & Kim, C. S. (2011, May). Single image dehazing based on contrast enhancement. In 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 1273–1276). IEEE. [CrossRef] [Google Scholar]
  29. Long, J., Shi, Z., Tang, W., & Zhang, C. (2013). Single remote sensing image dehazing. IEEE Geoscience and Remote Sensing Letters, 11(1), 59–63. [Google Scholar]
  30. Kim, J. H., Jang, W. D., Sim, J. Y., & Kim, C. S. (2013). Optimized contrast enhancement for real-time image and video dehazing. Journal of Visual Communication and Image Representation, 24(3), 410–425. [CrossRef] [Google Scholar]
  31. Ancuti, C. O., & Ancuti, C. (2013). Single image dehazing by multi-scale fusion. IEEE Transactions on Image Processing, 22(8), 3271–3282. [CrossRef] [Google Scholar]
  32. Feng, C., Zhuo, S., Zhang, X., Shen, L., & Süsstrunk, S. (2013, September). Nearinfrared guided color image dehazing. In 2013 IEEE international conference on image processing (pp. 2363–2367). IEEE. [CrossRef] [Google Scholar]
  33. Li, J., Zhang, H., Yuan, D., & Sun, M. (2015). Single image dehazing using the change of detail prior. Neurocomputing, 156, 1–11. [CrossRef] [Google Scholar]
  34. Galdran, A., Vazquez-Corral, J., Pardo, D., & Bertalmio, M. (2015). Enhanced variational image dehazing. SIAM Journal on Imaging Sciences, 8(3), 15191546. [CrossRef] [MathSciNet] [Google Scholar]
  35. Berman, D., & Avidan, S. (2016). Non-local image dehazing. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1674–1682). [Google Scholar]
  36. Galdran, A., Vazquez-Corral, J., Pardo, D., & Bertalmio, M. (2016). Fusionbased variational image dehazing. IEEE Signal Processing Letters, 24(2), 151155. [Google Scholar]
  37. Wang, J., Lu, K., Xue, J., He, N., & Shao, L. (2017). Single image dehazing based on the physical model and MSRCR algorithm. IEEE Transactions on Circuits and Systems for Video Technology, 28(9), 2190–2199. [Google Scholar]
  38. Yan, W., & Cui, L. (2024). Image dehaze algorithm based on improved atmospheric scattering models. IEEE Access. [Google Scholar]
  39. Hong, S., Kim, M., & Kang, M. G. (2021). Single image dehazing via atmospheric scattering model-based image fusion. Signal Processing, 178, 107798. [CrossRef] [Google Scholar]
  40. Raikwar, S. C., & Tapaswi, S. (2020). Adaptive dehazing control factor based fast single image dehazing. Multimedia Tools and Applications, 79, 891–918. [CrossRef] [Google Scholar]
  41. Li, Z. (2022, September). Image Dehazing Algorithm Based on Atmospheric Scattering Model. In Proceedings of the 7th International Conference on Intelligent Information Processing (pp. 1–5). [Google Scholar]
  42. Yan, W., & Cui, L. (2024). Image dehaze algorithm based on improved atmospheric scattering models. IEEE Access. [Google Scholar]
  43. Deep learning for image dehazing- the what, why, and how | DigitalOcean. (n.d.). https://www.digitalocean.com/community/tutorials/image-dehazing-the-what-why-and-how [Google Scholar]
  44. Wang, W., Chang, F., Ji, T., & Wu, X. (2018). A fast single-image dehazing method based on a physical model and gray projection. IEEE Access, 6, 56x–5653. [Google Scholar]
  45. Ju, M., Zhang, D., & Wang, X. (2017). Single image dehazing via an improved atmospheric scattering model. The Visual Computer, 33, 1613–1625. [CrossRef] [Google Scholar]
  46. Bu, Q., Luo, J., Ma, K., Feng, H., & Feng, J. (2020). An enhanced pix2pix dehazing network with guided filter layer. Applied Sciences, 10(17), 5898. [CrossRef] [Google Scholar]
  47. Desai, C., Reddy, B. S. S., Tabib, R. A., Patil, U., & Mudenagudi, U. (2022). Aquagan: Restoration of underwater images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 296–304). [Google Scholar]
  48. Li, B., Ren, W., Fu, D., Tao, D., Feng, D., Zeng, W., & Wang, Z. (2018). Benchmarking single-image dehazing and beyond. IEEE Transactions on Image Processing, 28(1), 492–505. [Google Scholar]
  49. Bu, Q., Luo, J., Ma, K., Feng, H., & Feng, J. (2020). An enhanced pix2pix dehazing network with guided filter layer. Applied Sciences, 10(17), 5898. [CrossRef] [Google Scholar]
  50. Tufail, Z., Khurshid, K., Salman, A., Nizami, I. F., Khurshid, K., & Jeon, B. (2018). Improved dark channel prior for image defogging using RGB and YCbCr color space. IEEE Access, 6, 32576–32587. [CrossRef] [Google Scholar]
  51. Zhu, M., He, B., & Wu, Q. (2017). Single image dehazing based on dark channel prior and energy minimization. IEEE Signal Processing Letters, 25(2), 174–178. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.