Open Access
Issue |
ITM Web Conf.
Volume 74, 2025
International Conference on Contemporary Pervasive Computational Intelligence (ICCPCI-2024)
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 10 | |
Section | Artificial Intelligence and Machine Learning Applications | |
DOI | https://doi.org/10.1051/itmconf/20257401012 | |
Published online | 20 February 2025 |
- Okokpujie, K., Noma-Osaghae, E., John, S., Grace, K. A., Okokpujie, I. (2017, November). A face recognition attendance system with GSM notification. In 2017 IEEE 3rd international conference on electro-technology for national development (NIGERCON) (pp. 239–244). IEEE. [Google Scholar]
- Zhang, H., Diao, S., Yang, Y., Zhong, J., Yan, Y. (2024). Multi-scale image recognition strategy based on convolutional neural network. Journal of Computing and Electronic Information Management, 12(3), 107–113. [CrossRef] [Google Scholar]
- Wang, C., Pei, S., Lv, X., Ding, W. (2024). Multiscale collaborative representation for face recognition via class-information fusion. Pattern Recognition, 154, 110586. [CrossRef] [Google Scholar]
- Raj, A., Srivastav, H., Shukla, S., Gupta, N. (2024, March). Facial Recognition-Based Student Attendance System. In 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 15). IEEE. [Google Scholar]
- Surantha, N., Sugijakko, B. (2024). Lightweight face recognition based portable attendance system with liveness detection. Internet of Things, 25, 101089. [CrossRef] [Google Scholar]
- Nguyen-Tat, B. T., Bui, M. Q., Ngo, V. M. (2024). Automating attendance management in human resources: A design science approach using computer vision and facial recognition. International Journal of Information Management Data Insights, 4(2), 100253. [CrossRef] [MathSciNet] [Google Scholar]
- Ouannes, L., Khalifa, A. B., Amara, N. E. B. (2024, July). Enhancing face recognition in degraded conditions via vision transformer. In 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT) (pp. 2887–2892). IEEE. [CrossRef] [Google Scholar]
- Ojo, O. S., Oyediran, M. O., Awodoye, O. O., Ajagbe, S. A., Awotunde, J. B., Bandyopadhyay, A., Adigun, M. O. (2024). Real-time Face-based Gender Identification System Using Pelican Support Vector Machine. Procedia Computer Science, 235, 3236–3245. Selvan, M. A. (2024). Deep Learning Techniques for Comprehensive Emotion Recognition and Behavioral Regulation. [CrossRef] [Google Scholar]
- Al-Otaiby, N., & El-Alfy, E. S. M. (2023, September). Effects of face image degradation on recognition with vision transformers: Review and case study. In 2023 3rd International Conference on Computing and Information Technology (ICCIT) (pp. 409–415). IEEE. [CrossRef] [Google Scholar]
- Woubie, A., Solomon, E., Attieh, J. (2024). Maintaining Privacy in Face Recognition using Federated Learning Method. IEEE Access. [Google Scholar]
- Bergman, N., Yitzhaky, Y., Halachmi, I. (2024). Biometric identification of dairy cows via real-time facial recognition. Animal, 18(3), 101079. [CrossRef] [Google Scholar]
- Painuly, K., Bisht, Y., Vaidya, H., Kapruwan, A., Gupta, R. (2024, January). Efficient Real-Time Face Recognition-Based Attendance System with Deep Learning Algorithms. In 2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics IITCEE (pp. 1–5). IEEE. [Google Scholar]
- Ghani, M. A. N. U., She, K., Rauf, M. A., Khan, S., Khan, J. A., Aldakheel, E. A., Khafaga, D. S. (2024). Enhancing Security and Privacy in Distributed Face Recognition Systems through Blockchain and GAN Technologies. Computers, Materials Continua. [Google Scholar]
- Santoso, J. T., Manongga, D. H., Iriani, A. (2024). Integration of AI, ML, and DL Technologies in Project Management for Data Security Based Face Recognition Attendance Systems. Penerbit Yayasan Prima Agus Teknik, 1–177. [Google Scholar]
- Beretta, E., Voto, C., Rozera, E. (2024). Decoding Faces: Misalignments of Gender Identification in Automated Systems. Journal of Responsible Technology, 100089. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.