Open Access
Issue
ITM Web Conf.
Volume 74, 2025
International Conference on Contemporary Pervasive Computational Intelligence (ICCPCI-2024)
Article Number 01019
Number of page(s) 12
Section Artificial Intelligence and Machine Learning Applications
DOI https://doi.org/10.1051/itmconf/20257401019
Published online 20 February 2025
  1. Girish S. Bhavekar, “Hybrid approach to medical decision-making prediction of heart disease with artificial neural network”, Bulletin of Electrical Engineering and Informatics, 20 Sep 2024 [Google Scholar]
  2. Maryam Moulaverdi; Akbar Ranjbar, “Diagnosis of Heart Diseases based on Processing Heart Sound using Machine Learning”, 32nd International Conference on Electrical Engineering (ICEE), Sep-2024, Tehran, Iran, DOI: 10.1109/ICEE63041.2024.10667835 [Google Scholar]
  3. SyedaUrwa Warsi; Saba Mohsin, et al., “A Hybrid Approach for Heart Disease Prediction using Genetic Algorithm and SVM” 5th International Conference on Advancements in Computational Sciences (ICACS)”, 21st March, Lahore, Pakistan, 2024, DOI: 10.1109/ICACS60934.2024.10473308. [Google Scholar]
  4. Dhruvi Thakkar; Pragati Agrawal, “Hybrid feature selection and Optimized Deep CNN for Heart disease Prediction” 2ndInternational Conference of Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS), Nagpur, India, 2023 DOI: 10.1109/PCEMS58491.2023.10136121 [Google Scholar]
  5. D. Venkatesh; T. Saravanan, “Prediction of heart disease using machine learning and hybrid methods”, Ist International conference on Optimization Techniques for Learning, Bengaluru, India, Feb-2024. DOI: 10.1109/ICOTL59758.2023.10435033 [Google Scholar]
  6. M. Vijay SekharBabu; Anuradha Jha, “A Consistent Deep Neural Network to Diagnose Heart Disease”, International Conference on Inventive Computation Technologies(ICICT), June-2023, Lalitpur, Nepal DOI: 10.1109/ICICT57646.2023.10133948 [Google Scholar]
  7. Kamarthi Lava Kumar; B. Eswara Reddy, “Heart Disease Detection System Using Gradient Boosting Technique”, International Conference on Computing Sciences (ICCS), June-2022, Phagwara, India, DOI: 10.1109/ICCS54944.2021.00052. [Google Scholar]
  8. Martin gjoreskiand antongradisek, et.al. Machine Learning and End-to-End Deep Learningfor the Detection of Chronic Heart Failure From Heart Sounds, IEEE Access, Jan-2020, DOI: 10.1109/ACCESS.2020.2968900 [Google Scholar]
  9. M. Gjoreski, M. Simjanoska, A. Gradisek, A. Peterlin, M. Gams, and G. Poglajen, “Chronic heart failure detection from heart sounds using a stack of machine-learning classifiers,” in Proc. Int. Conf. Intell. Envi-ron. (IE), Aug. 2017, pp. 14–19. [Google Scholar]
  10. G. D. Clifford, C. Liu, B. Moody, D. Springer, I. Silva, Q. Li, and R. G. Mark, “Classification of normal/abnormal heart sound recordings: The Physio Net/computing in cardiology challenge 2016,” in Proc. Com-put. Cardiol. Conf. (CinC), May 2017, pp. 609–612. [Google Scholar]
  11. S. Schmidt, E. Toft, C. Holst-Hansen, C. Graff, and J. Struijk, “Segmentation of heart sound recordings from an electronic stethoscope by a duration dependent Hidden- Markov model,” in Proc. Comput. Cardiol., Sep. 2008, pp. 345–348 [Google Scholar]
  12. D. B. Springer, L. Tarassenko, and G. D. Clifford, “Logistic regression-HSMM-based heart sound segmentation,” IEEE Trans. Biomed. Eng., vol. 63, no. 4, pp. 822–832, Apr. 2015. [Google Scholar]
  13. M. N. Homsi, N. Medina, M. Hernandez, N. Quintero, G. Perpiñan, A. Quintana, and P. Warrick, “Automatic heart sound recording classification using a nested set of ensemble algorithms,” in Proc. Comput. Cardiol.Conf. (CinC), May 2017, pp. 817–820. [Google Scholar]
  14. F. Plesinger, I. Viscor, J. Halamek, J. Jurco, and P. Jurak, “Heart sounds analysis using probability assessment,” Physiol. Meas., vol. 38, no. 8, pp. 1685–1700, May 2017. [CrossRef] [Google Scholar]
  15. C. Potes, S. Parvaneh, A. Rahman, and B. Conroy, “Ensemble of feature: Based and deep learning: Based classifiers for detection of abnormal heart sounds,” in Proc. Comput. Cardiol. Conf. (CinC), May 2017, pp. 621–624. [Google Scholar]
  16. M. Zabihi, A. Bahrami Rad, S. Kiranyaz, M. Gabbouj, and A. K. Katsaggelos, “Heart sound anomaly and quality detection using ensemble of neural networks without segmentation,” in Proc. Comput.Cardiol. Conf. (CinC), May 2017, pp. 613–616. [Google Scholar]
  17. I. D. Bobillo, “A tensor approach to heart sound classi_cation,” in Proc. Comput. Cardiol. Conf. (CinC), May 2017, pp. 629–632. [Google Scholar]
  18. J. Rubin, R. Abreu, A. Ganguli, S. Nelaturi, I. Matei, and K. Sricharan, “Classifying heart sound recordings using deep convolutional neural networks and mel-frequency cepstral coefficients,” in Proc. Comput. Cardiol.Conf. (CinC), May 2017, pp. 813–816. [Google Scholar]
  19. X. Jiang, Y. Pang, X. Li, and J. Pan, “ Speed up deep neural network based pedestrian detection by sharing features across multi-scale models,” Neurocomputing, vol. 185, pp. 163–170, Apr. 2016. [CrossRef] [Google Scholar]
  20. F. Plesinger, I. Viscor, J. Halamek, J. Jurco, and P. Jurak, “Heart sounds analysis using probability assessment,” Physiol. Meas., vol. 38, no. 8, pp. 1685–1700, May 2017 [CrossRef] [Google Scholar]
  21. L. Deng and D. Yu, “Deep learning: Methods and applications,” Found.Trends Signal Process., vol. 7, nos. 3-4, pp. 197–387, 2014 [CrossRef] [Google Scholar]
  22. G. D. Clifford, C. Liu, B. Moody, D. Springer, I. Silva, Q. Li, and R. G. Mark, “Classi_cation of normal/abnormal heart sound recordings: The Physio Net/computing in cardiology challenge 2016,” in Proc. Com-put. Cardiol. Conf. (CinC), May 2017, pp. 609–612. [Google Scholar]
  23. R. F. Woolson, Wilcoxon Signed-Rank Test. Hoboken, NJ, USA: Wiley, 2007, pp. 1–3. [Google Scholar]
  24. S. Choi and Z. Jiang, “Comparison of envelope extraction algorithms forcardiac sound signal segmentation,” Expert Syst. Appl., vol. 34, no. 2, pp. 1056–1069, Feb. 2008. [CrossRef] [Google Scholar]
  25. A. Gradiek, G. Slapnicar, Jorn M. Lutrek, M. Gams, and J. Grad, ‘Predicting species identity of bumblebees through analysis of flight buzzing sounds,’ Bioacoustics, vol. 26, no. 1, pp. 63–76, Jan. 2017. [CrossRef] [Google Scholar]
  26. R. Wang and K. Tang, “Feature selection for maximizing the area under theROC curve,” in Proc. IEEE Int. Conf. Data Mining Workshops, Dec. 2009, pp. 400–405. [Google Scholar]
  27. G. Xuan, X. Zhu, P. Chai, Z. Zhang, Y. Q. Shi, and D. Fu, “Feature selectionbased on the bhattacharyya distance,” in Proc. 18th Int. Conf. Pattern Recognit. (ICPR), vol. 4, 2006, p. 957. [CrossRef] [Google Scholar]
  28. A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual information.,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 69, no. 6, 2004, Art. no. 066138. [Google Scholar]
  29. S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics Intell. Lab. Syst., vol. 2, nos. 1-3, pp. 37–52, 1987. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.