Open Access
Issue |
ITM Web Conf.
Volume 74, 2025
International Conference on Contemporary Pervasive Computational Intelligence (ICCPCI-2024)
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 12 | |
Section | Cybersecurity, Networks, and Computing Technologies | |
DOI | https://doi.org/10.1051/itmconf/20257402003 | |
Published online | 20 February 2025 |
- J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “Unmanned aircraft capture and control via GPS spoofing,” J. Field Robot., vol. 31, no. 4, pp. 617–636, Jul. 2014. [CrossRef] [Google Scholar]
- Y. Cao et al., “Adversarial sensor attack on LiDAR-based perception in autonomous driving,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019, pp. 2267–2281. [Google Scholar]
- D. Davidson, H. Wu, R. Jellinek, V. Singh, and T. Ristenpart, “Controlling UAVs with sensor input spoofing attacks,” in Proc. 10th USENIX Workshop Offensive Technol. (WOOT), 2016, pp. 221–231. [Google Scholar]
- N. DeMarinis, S. Tellex, V. P. Kemerlis, G. Konidaris, and R. Fonseca, “Scanning the Internet for ROS: A view of security in robotics research,” in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019, pp. 8514–8521. [Google Scholar]
- J. Petit and S. E. Shladover, “Potential cyberattacks on automated vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 546–556, Apr. 2015. [Google Scholar]
- V. L. L. Thing and J. Wu, “Autonomous vehicle security: A taxonomy of attacks and defences,” in Proc. IEEE Int. Conf. Internet Things (iThings) IEEE Green Comput. Commun. (GreenCom) IEEE Cyber, Phys. Social Comput. (CPSCom) IEEE Smart Data (SmartData), Dec. 2016, pp. 164–170. [CrossRef] [Google Scholar]
- S. Parkinson, P. Ward, K. Wilson, and J. Miller, “Cyber threats facing autonomous and connected vehicles: Future challenges,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 11, pp. 2898–2915, Nov. 2017. [CrossRef] [Google Scholar]
- Bezemskij, G. Loukas, R. J. Anthony, and D. Gan, “Behaviour based anomaly detection of cyber-physical attacks on a robotic vehicle,” in Proc. 15th Int. Conf. Ubiquitous Comput. Commun. Int. Symp. Cyberspace Secur. (IUCC-CSS), Dec. 2016, pp. 61–68. [Google Scholar]
- Bezemskij, G. Loukas, D. Gan, and R. J. Anthony, “Detecting cyber physical threats in an autonomous robotic vehicle using Bayesian networks,” in Proc. IEEE Int. Conf. Internet Things (iThings) IEEE Green Comput. Commun. (GreenCom) IEEE Cyber, Phys. Social Comput. (CPSCom) IEEE Smart Data (SmartData), Jun. 2017, pp. 98103. [Google Scholar]
- M. Olivato, O. Cotugno, L. Brigato, D. Bloisi, A. Farinelli, and L. Iocchi, “A comparative analysis on the use of autoencoders for robot security anomaly detection,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019, pp. 984–989. [Google Scholar]
- D. Suo and S. E. Sarma, “Real-time trust-building schemes for mitigating malicious behaviors in connected and automated vehicles,” in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Oct. 2019, pp. 1142–1149. [Google Scholar]
- F. Jiang, B. Qi, T. Wu, K. Zhu, and L. Zhang, “CPSS: CP-ABE based platoon secure sensing scheme against cyber-attacks,” in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Oct. 2019, pp. 3218–3223. [Google Scholar]
- R. Changalvala and H. Malik, “LiDAR data integrity verification for autonomous vehicle,” IEEE Access, vol. 7, pp. 138018–138031, 2019. [CrossRef] [Google Scholar]
- C. Kwon, W. Liu, and I. Hwang, “Security analysis for cyber-physical systems against stealthy deception attacks,” in Proc. Amer. Control Conf., Jun. 2013, pp. 3344–3349. [Google Scholar]
- H. S. Sánchez, D. Rotondo, T. Escobet, V. Puig, and J. Quevedo, “Bibliographical review on cyber attacks from a control oriented perspective,” Annu. Rev. Control, vol. 48, pp. 103–128, 2019. [CrossRef] [MathSciNet] [Google Scholar]
- Á. M. Guerrero-Higueras, N. DeCastro-García, and V. Matellán, “Detection of cyberattacks to indoor real time localization systems for autonomous robots,” Robot. Auto. Syst., vol. 99, pp. 75–83, Jan. 2018. [CrossRef] [Google Scholar]
- F. van Wyk, Y. Wang, A. Khojandi, and N. Masoud, “Real-time sensor anomaly detection and identification in automated vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 3, pp. 1264–1276, Mar. 2020. [CrossRef] [Google Scholar]
- Ferdowsi, U. Challita, W. Saad, and N. B. Mandayam, “Robust deep reinforcement learning for security and safety in autonomous vehicle systems,” in Proc. 21st Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2018, pp. 307–312. [Google Scholar]
- Rasheed, F. Hu, and L. Zhang, “Deep reinforcement learning approach for autonomous vehicle systems for maintaining security and safety using LSTM-GAN,” Veh. Commun., vol. 26, Dec. 2020, Art. no. 100266. [Google Scholar]
- N. Patel, A. Nandini Saridena, A. Choromanska, P. Krishnamurthy, and F. Khorrami, “Adversarial learning-based on-line anomaly monitoring for assured autonomy,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2018, pp. 6149–6154. [Google Scholar]
- Y. Wang, N. Masoud, and A. Khojandi, “Real-time sensor anomaly detection and recovery in connected automated vehicle sensors,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3, pp. 1411–1421, Mar. 2021. [CrossRef] [Google Scholar]
- Z. Abdollahi Biron, S. Dey, and P. Pisu, “Real-time detection and estimation of denial of service attack in connected vehicle systems,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 12, pp. 3893–3902, Dec. 2018. [CrossRef] [Google Scholar]
- E. Mousavinejad, F. Yang, Q.-L. Han, X. Ge, and L. Vlacic, “Distributed cyber attacks detection and recovery mechanism for vehicle platooning,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 9, pp. 3821–3834, Sep. 2020. [CrossRef] [Google Scholar]
- G. Sabaliauskaite, G. S. Ng, J. Ruths, and A. Mathur, “A comprehensive approach, and a case study, for conducting attack detection experiments in cyber-physical systems,” Robot. Auton. Syst., vol. 98, pp. 174–191, Dec. 2017. [CrossRef] [Google Scholar]
- Keipour, M. Mousaei, and S. Scherer, “Automatic real-time anomaly detection for autonomous aerial vehicles,” in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019, pp. 5679–5685. [Google Scholar]
- G. K. Rajbahadur, A. J. Malton, A. Walenstein, and A. E. Hassan, “A survey of anomaly detection for connected vehicle cybersecurity and safety,” in Proc. IEEE Intell. Vehicles Symp. (IV), Jun. 2018, pp. 421–426. [Google Scholar]
- The Autoware Foundation-Open Source for Autonomous Driving. Accessed: Mar. 9, 2020. [Google Scholar]
- J. Giraldo et al., “A survey of physics-based attack detection in cyberphysical systems,” ACM Comput. Surv., vol. 51, no. 4, pp. 1–36, 2018. [Google Scholar]
- Sadaf, Memoona, et al. “A Novel Framework for Detection and Prevention of Denial of Service Attacks on Autonomous Vehicles using Fuzzy Logic.” Vehicular Communications (2024): 100741. [CrossRef] [Google Scholar]
- Micale, Davide, et al. “A context-aware on-board intrusion detection system for smart vehicles.” International Journal of Information Security (2024): 1–21. [Google Scholar]
- M. Begum, G. Raja and M. Guizani, “AI-based Sensor Attack Detection and Classification for Autonomous Vehicles in 6G-V2X Environment,” in IEEE Transactions on Vehicular Technology, DOI: 10.1109/TVT.2023.3334257. [Google Scholar]
- P. Mansourian, N. Zhang, A. Jaekel and M. Kneppers, “Deep Learning-Based Anomaly Detection for Connected Autonomous Vehicles Using Spatiotemporal Information,” in IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 12, pp. 16006–16017, Dec. 2023, DOI: 10.1109/TITS.2023.3286611. [CrossRef] [Google Scholar]
- S. Baccari, M. Hadded, H. Ghazzai, H. Touati and M. Elhadef, “Anomaly Detection in Connected and Autonomous Vehicles: A Survey, Analysis, and Research Challenges,” in IEEE Access, vol. 12, pp. 19250–19276, 2024, DOI: 10.1109/ACCESS.2024.3361829. [CrossRef] [Google Scholar]
- S. Yan, Z. Gu, J. H. Park and M. Shen, “Fusion-Based Event-Triggered State Estimation of Networked Autonomous Surface Vehicles With Measurement Outliers and Cyber-Attacks,” in IEEE Transactions on Intelligent Transportation Systems, DOI: 10.1109/TITS.2024.3350536. [Google Scholar]
- Devi, V.S., Kumar, C.N. Bio-Inspired and Trust Based Clustering Routing Protocol for Hybrid MANETs. Wireless col Commun (2024). https://doi.org/10.1007/s11277-024-11724-w [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.