Open Access
Issue |
ITM Web Conf.
Volume 74, 2025
International Conference on Contemporary Pervasive Computational Intelligence (ICCPCI-2024)
|
|
---|---|---|
Article Number | 03002 | |
Number of page(s) | 8 | |
Section | Engineering, Smart Systems, and Optimization | |
DOI | https://doi.org/10.1051/itmconf/20257403002 | |
Published online | 20 February 2025 |
- Ministry of Road Transport and Highways, Government of India, “Road Accident in India,” [Online]. Available: https://morth.nic.in/road-accident-in-india. [Accessed: Jan. 28, 2025]. [Google Scholar]
- R. Agarwal, A. Yadav, and D. P. Agarwal, “Road Accident Prediction Using Machine Learning,” [Online]. Available: https://www.researchgate.net/publication/379628962_Road_Accident_Prediction_Using_Machine_Learning. [Accessed: Jan. 28, 2025]. [Google Scholar]
- J. Smith and M. Brown, “Road Traffic Analysis Using Machine Learning Techniques,” in Proc. IEEE Conf., 2022, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/9823499. [Accessed: Jan. 28, 2025]. [Google Scholar]
- Wikipedia, “Traffic Collisions in India,” [Online]. Available: https://en.wikipedia.org/wiki/Traffic_collisions_in_India. [Accessed: Jan. 28, 2025]. [Google Scholar]
- M. Balaji, “Road-Traffic Accident Severity Prediction,” GitHub Repository, [Online]. Available: https://github.com/mp-balaji/Road-Traffic-Accident-Severity-Prediction. [Accessed: Jan. 28, 2025]. [Google Scholar]
- S. Shaik, “DM Algorithms Based Clustering for Road Accident Data Analysis,” Int. J. Comput. Sci. Eng., vol. 6, no. 9, pp. 321–328, Sep. 2018. [MathSciNet] [Google Scholar]
- C. S. K. Varma, S. F. Ali, S. Jishnu, and S. Subhani, “Traffic Infringement System Using Machine Learning,” Dickensian J., vol. 22, no. 6, pp. 122–128, Jun. 2022. [Google Scholar]
- World Health Organization, “World Report on Road Traffic Injury Prevention,” pp. 12, 2015. [Google Scholar]
- Y. Zou, B. Lin, X. Yang, L. Wu, M. M. Abid, and J. Tang, “Application of the Bayesian Model Averaging in Analyzing Freeway Traffic Incident Clearance Time for Emergency Management,” J. Adv. Transp., vol. 2021, pp. 1–9, 2021. [CrossRef] [Google Scholar]
- S. A. Mehmood, S. Ullah, M. Ahmad, G. S. Choi, and B. W. Kim, “Aggression Detection Through Deep Neural Model on Twitter,” Future Gener. Comput. Syst., vol. 114, pp. 120–129, 2021. [CrossRef] [Google Scholar]
- E. Azimirad, N. Pariz, and M. B. N. Sistani, “A Novel Fuzzy Model and Control of Single Intersection at Urban Traffic Network,” IEEE Syst. J., vol. 4, no. 1, pp. 107–111, 2010. [CrossRef] [Google Scholar]
- Y. Hou, Z. Deng, and H. Cui, “Short-Term Traffic Flow Prediction with Weather Conditions: Based on Deep Learning Algorithms and Data Fusion,” Complexity, vol. 2021, pp. 1–14, 2021. [Google Scholar]
- R. V. K. Reddy, S. Shaik, G. R. Chandra, and B. S. Rao, “Breast Cancer Prediction Using Classification Techniques,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 9, pp. 3218–3225, 2020. [Google Scholar]
- R. V. K. Reddy, S. Shaik, and B. S. Rao, “Machine Learning Based Outlier Detection for Medical Data,” Indones. J. Electr. Eng. Comput. Sci., vol. 24, no. 1, pp. 25–33, Oct. 2021. [Google Scholar]
- V. K. Vijayalakshmi and S. Shaik, “Predictive Analytics of Employee Attrition Using K-Fold Methodologies,” I. J. Math. Sci. Comput., vol. 2023, no. 1, pp. 23–36, Mar. 2023. [Google Scholar]
- G. S. Chaitanya, S. Shaik, P. Visalakshi, and G. Rakshitha, “Comparative Study of Ensemble Machine Learning Techniques for Airline Delay Prediction,” Int. J. Eng. Comput. Sci., vol. 6, no. 1, pp. 12–19, Jan.-Jun. 2024. [Google Scholar]
- J. Lavanya, M. Ramesh, J. Sravan Kumar, G. Rajaramesh, and S. Shaik, “Hate Speech Detection Using Decision Tree Algorithm,” J. Adv. Math. Comput. Sci., vol. 38, no. 8, pp. 66–75, Jun. 2023. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.