Open Access
Issue |
ITM Web Conf.
Volume 74, 2025
International Conference on Contemporary Pervasive Computational Intelligence (ICCPCI-2024)
|
|
---|---|---|
Article Number | 03012 | |
Number of page(s) | 11 | |
Section | Engineering, Smart Systems, and Optimization | |
DOI | https://doi.org/10.1051/itmconf/20257403012 | |
Published online | 20 February 2025 |
- Kang, L., & Wang, Y. (2024). Efficient and accurate personalized product recommendations through frequent item set mining fusion algorithm. Heliyon, 10(3). [Google Scholar]
- Rahman, A., Haque, Z., & Ahammad, M. S. (2024). E-Commerce Product Recommendation System Using Machine Learning Algorithms. International Journal of Computer Science and Information Security (IJCSIS), 22(3). [Google Scholar]
- Nguyen, D. N., Nguyen, V. H., Trinh, T., Ho, T., & Le, H. S. (2024). A personalized product recommendation model in e-commerce based on retrieval strategy. Journal of Open Innovation: Technology, Market, and Complexity, 10(2), 100303. [CrossRef] [Google Scholar]
- Loukili, M., Messaoudi, F., & El Ghazi, M. (2024). A personalized product recommendation model in e-commerce based on retrieval strategy. (2024). [Google Scholar]
- Liu, L. (2022). e-commerce Personalized Recommendation Based on Machine Learning Technology. Mobile Information Systems, 2022(1), 1761579. [Google Scholar]
- Udokwu, C., Zimmermann, R., Darbanian, F., Obinwanne, T., & Brandtner, P. (2023). Design and Implementation of a Product Recommendation System with Association and Clustering Algorithms. Procedia Computer Science, 219, 512–520. [CrossRef] [Google Scholar]
- Tahir, M., Enam, R. N., & Mustafa, S. M. N. (2021, November). E-commerce platform based on Machine Learning Recommendation System. In 2021 6th International Multi-Topic ICT Conference (IMTIC) (pp. 1–4). IEEE. [Google Scholar]
- Biswas, A., Vineeth, K. S., & Jain, A. (2020, January). Development of product recommendation engine by collaborative filtering and association rule mining using machine learning algorithms. In 2020 Fourth International Conference on Inventive Systems and Control (ICISC) (pp. 272–277). IEEE. [CrossRef] [Google Scholar]
- Hui, B., Zhang, L., Zhou, X., Wen, X., & Nian, Y. (2022). Personalized recommendation system based on knowledge embedding and historical behavior. Applied Intelligence, 113. [Google Scholar]
- Valencia-Arias, A., Uribe-Bedoya, H., González-Ruiz, J. D., Santos, G. S., & Ramírez, E. C. (2024). Artificial Intelligence and Recommender Systems in e-commerce. Trends and Research Agenda. Intelligent Systems with Applications, 200435. [CrossRef] [Google Scholar]
- Zhang, W., & Wu, Z. (2024). E-commerce recommender system based on improved K-means commodity information management model. Heliyon, 10(9). [Google Scholar]
- Sodhar, A. N., Khan, U. A., Sodhar, I. N., Buller, A. H., & Sodhar, J. (2022). Product Recommendation Using Machine Learning a Review of the Existing Techniques. IJCSNS, 22(5), 523. [Google Scholar]
- Daza, A., Rueda, N. D. G., Sánchez, M. S. A., Espíritu, W. F. R., & Quiñones, M.E. C. (2024). Sentiment Analysis on E-Commerce Product Reviews Using Machine Learning and Deep Learning Algorithms: A Bibliometric Analysisand Systematic Literature Review, Challenges and Future Works. International Journal of Information Management Data Insights, 4(2), 100267. [CrossRef] [Google Scholar]
- Wijaya, I. W. R. (2022). Development of conceptual model to increase customer interest using recommendation system in e-commerce. Procedia Computer Science, 197, 727–733. [CrossRef] [Google Scholar]
- Gulnara, B., Guldana, S., & Yerassyl, A. (2024). Application of Recommended Systems for E-commerce. Procedia Computer Science, 231, 329–334. [CrossRef] [Google Scholar]
- S. Sajida Sultana, M. Bhargavi, R. Devi, B. Niharika, C. Rishitha and A. Seswitha, “Deep Learning - based Banknote Classification: Harnessing Artificial Neural Networks,” 2024 3rd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 2024, pp. 21–27, doi: 10.1109/ICAAIC60222.2024.1057539 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.