Open Access
Issue
ITM Web Conf.
Volume 75, 2025
The Second International Conference on Mathematical Analysis and Its Applications (ICONMAA 2024)
Article Number 04004
Number of page(s) 17
Section Statistics and Stochastic Analysis
DOI https://doi.org/10.1051/itmconf/20257504004
Published online 21 February 2025
  1. Turkes, M., Turp, MT., An N, Ozturk T., Kurnaz ML., Impacts of Climate Change on Precipitation Climatology and Variability in Turkey. Harmancioglu N, Altinbilek D (eds) Water Resources of Turkey. World Water Resources 2, (2020). [Google Scholar]
  2. Hernández, E., Sanchez-Anguix, V., Julian, V., Palanca, J., and Duque, N., Rainfall Prediction: A Deep Learning Approach. Hybrid Artificial Intelligent Systems: 11th International Conference 11, 151–162 (2016). [Google Scholar]
  3. Wahyudi, S.R., Sari, R.F., WIDYASARI, R., Penentuan Pola Penyebaran Curah Hujan Harian Kabupaten Karo dengan Menggunakan Rantai Markov Orde-N. Jurnal Riset dan Aplikasi Matematika (JRAM) 5, 144–157 (2021). [Google Scholar]
  4. Islami, R. L., and Sihombing, P. R., Interpolasi Curah Hujan Ekstrim Menggunakan Model Spatial Di Provinsi Jawa Barat. Jurnal Aplikasi Statistika and Komputasi Statistik 13, 15–22 (2021). [CrossRef] [Google Scholar]
  5. Safril, A., Nuryanto, D. E., Chevi, N. L. C., Agustina, L., Ardi Z. K. A., Munawar, M., and Faturrahman, F., Prediksi Curah Hujan Bulanan Untuk Peringatan Dini Longsor di Banjarnegara Bagian Selatan Dengan Statistical Downscaling Dan Ensemble. Jurnal Meteorologi Dan Geofisika 21, 69–80 (2021). [CrossRef] [Google Scholar]
  6. Ullah et al., Comparing Multiple Precipitation Products against In-Situ Observations over Different Climate Regions of Pakistan. Remote Sens 1321, (2024). [Google Scholar]
  7. Paredes-Trejo, FJ., Barbosa HA., Kumar TVL., Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J Arid Environ 139, 26–40 (2017). [CrossRef] [Google Scholar]
  8. Zhang, T., Li, B., Wang, J., Hu, M., and Xu, L., Estimation of Areal Mean Rainfall in Remote Areas Using B-SHADE Model. Advances in Meteorology 1, (2016). [Google Scholar]
  9. Aksu, H., Areal Precipitation Estimation Using Satellite Derived Rainfall Data over an Irrigation Area. Turkish Journal of Agriculture-Food Science and Technology 12, 814–820 (2024). [CrossRef] [Google Scholar]
  10. Poedjiastoeti H., Adi, H. P., and Wahyudi, R. S., Prediction of the Hydrological Drought Index (HDI) based on Rain Simulation Data using an Artificial Neural Network (ANN) in the Randugunting Watershed, Rembang Regencya. In IOP Conference Series: Earth and Environmental Science 1321, (2019). [Google Scholar]
  11. Widyasari., Titiek., and Achmad, N., Kurva Intensitas Durasi Freakuensi Hujan Kabupaten Bantul dengan Menggunakan Metode Mononobe. Jurnal Teknik Sipil 122, 113–132 (2023). [Google Scholar]
  12. Anggraheni, E., Sutjiningsih, D., Mulyono, B. H., Ningrum, I. A., and Yahya, D. M., Pengaruh Sebaran Spasial Hujan terhadap Pemilihan Metode Hujan Wilayah Berbasis Analisis Geospasial. Jurnal Teknik Sumber Daya Air 2, 81–92 (2022). [CrossRef] [Google Scholar]
  13. Gunawan, A., Syaputra, I., and Agusalim, M., Pengaruh Sebaran Stasiun Hujan Terhadap Debit Banjir Rancangan pada Das Lipukasi Sungai Empungnge Kabupaten Barru. Kohesi: Jurnal Sains dan Teknologi 1, 1–10 (2023). [Google Scholar]
  14. Pakoksung K., Impact of Spatial Rainfall Scenarios on River Basin Runoff Simulation a Nan River Basin Study Using the Rainfall-Runoff-Inundation Model. Eng. 5, 51–69 (2023). [Google Scholar]
  15. F. Abd-Elhamid, H., M. El-Dakak, A., Zelenakova, M., O.K, S., Mahdy, M., and H. El Ghany, S., Rainfall Forecasting in Arid Regions in Response to Climate Change Using ARIMA and Remote Sensing. Geomatics, Natural Hazards and Risk 15, (2024). [CrossRef] [Google Scholar]
  16. Kusdarwati, H., Achmad Efendi, and Luthfatul Amaliana., Model Hibrid Harmonik, ARMA dan Outlier Curah Hujan di Surabaya, Malang dan Banyuwangi. Jurnal Statistika Dan Aplikasinya 7, 14–25 (2023). [CrossRef] [Google Scholar]
  17. Yuliawanti, F., D. Novitasari., N Widodo, A. Hamid, and W. Utami., Penerapan Metode Autoregressive Integrated Moving Average (ARIMA) untuk Prediksi Bilangan Sunspot. BAREKENG: J. Math. and App. 15, 555–564 (2021). [CrossRef] [Google Scholar]
  18. Yuandri, Y., Jonathan, R., Pasaribu, U. S., Mukhaiyar, U., and Heriwan, M. N., Minimum Sample Size and Optimum Depth Difference Study Based on Time-Series Analysis of Gamma-Ray Log Data. AIP Conference Proceedings 2468, (2022). [Google Scholar]
  19. Ulinnuha, M., M Afendi, F., and Sumertajaya, I. M., Study of Clustering Time Series Forecasting Model for Provincial Grouping in Indonesia Based on Rice Price: Kajian Model Peramalan Clustering Time Series untuk Penggerombolan Provinsi Indonesia berdasarkan Harga Beras. Indonesian Journal of Statistics and Its Applications 6, 50–62 (2022). [CrossRef] [Google Scholar]
  20. Safira, A., Dhiya’ulhaq, R. A., Fahmiyah, I., and Ghani, M., Spatial impact on inflation of Java Island prediction using Autoregressive Integrated Moving Average (ARIMA) and Generalized Space-Time ARIMA (GSTARIMA). Methodsx 10286, (2024). [Google Scholar]
  21. Duan, H., Gong, Y., Luo, J., and Zhao, Z., Air-quality prediction based on the ARIMACNN-LSTM combination model optimized by dung beetle optimizer. Scientific Reports 13, 12127 (2023). [Google Scholar]
  22. Zhao, J., Nie, G., and Wen, Y., Monthly Precipitation Prediction in Luoyang City Based on EEMD-LSTM-ARIMA Model. Water Science and Technology 87, 318–335 (2023). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.