Open Access
Issue |
ITM Web Conf.
Volume 76, 2025
Harnessing Innovation for Sustainability in Computing and Engineering Solutions (ICSICE-2025)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 9 | |
Section | Artificial Intelligence & Machine Learning | |
DOI | https://doi.org/10.1051/itmconf/20257601002 | |
Published online | 25 March 2025 |
- Atakishiyev, S., Salameh, M., Yao, H., & Goebel, R. (2021). Towards Safe, Explainable, and Regulated Autonomous Driving. arXiv preprint arXiv:2111.10518. [Google Scholar]
- Zhang, J., Cao, J., Chang, J., Li, X., Liu, H., & Li, Z. (2024). Research on the Application of Computer Vision Based on Deep Learning in Autonomous Driving Technology. arXiv preprint arXiv:2406.00490. [Google Scholar]
- Fernández Llorca, D., Hamon, R., Junklewitz, H., Grosse, K., Kunze, L., Seiniger, P., Swaim, R., Reed, N., Alahi, A., Gómez, E., Sánchez, I., & Kriston, A. (2024). Testing Autonomous Vehicles and AI: Perspectives and Challenges from Cybersecurity, Transparency, Robustness, and Fairness. arXiv preprint arXiv:2403.14641. [Google Scholar]
- Garikapati, D., & Shetiya, S. S. (2024). Autonomous Vehicles: Evolution of Artificial Intelligence and Learning Algorithms. arXiv preprint arXiv:2402.17690. [Google Scholar]
- Feng, S., Sun, H., Yan, X., Zhu, H., Zou, Z., Shen, S., & Liu, H. X. (2023). Dense Reinforcement Learning for Safety Validation of Autonomous Vehicles. Nature, 615, 620–627. [Google Scholar]
- Liu, L., Lu, S., Zhong, R., Wu, B., Yao, Y., Zhang, Q., & Shi, W. (2021). Computing Systems for Autonomous Driving: State-of-the-Art and Challenges. IEEE Internet of Things Journal, 8(8), 6469–6486. [Google Scholar]
- Chen, L., Tang, T., Cai, Z., & Li, Y. (2022). Level 2 Autonomous Driving on a Single Device: Diving into the Devils of Openpilot. arXiv preprint arXiv:2206.07959. [Google Scholar]
- Betz, J., Betz, T., Fent, F., Geisslinger, M., & Heilmeier, A. (2023). TUM Autonomous Motorsport: An Autonomous Racing Software for the Indy Autonomous Challenge. Journal of Field Robotics, 40(1), 3–25. [Google Scholar]
- Raji, A., Liniger, A., Giove, A., & Toschi, A. (2022). Motion Planning and Forecasting for an Autonomous Racing Car. In 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC) (pp. 1–7). IEEE. [Google Scholar]
- Jung, C., Finazzi, A., Seong, H., Lee, D., & Lee, S. (2023). An Autonomous Racing System: Design, Implementation, and Analysis; Team KAIST at the IAC. Field Robotics, 3, 1–20. [Google Scholar]
- Wischnewski, A., Herrmann, T., Werner, F., & Lohmann, B. (2023). A Tube-MPC Approach to Autonomous Multi-Vehicle Racing on High-Speed Ovals. IEEE Transactions on Intelligent Vehicles, 8(1), 1–12. [Google Scholar]
- Shi, W., Sun, H., Cao, J., Zhang, Q., & Liu, W. (2017). Edge Computing: Vision and Challenges. IEEE Internet of Things Journal, 3(5), 637–646. [Google Scholar]
- Rus, D., & Matusik, W. (2022). New Programmable 3D Printed Materials Can Sense Their Own Movements. Science Advances, 8(32), eabn3978. [Google Scholar]
- Liu, H. X., & Feng, S. (2024). Curse of Rarity for Autonomous Vehicles. Nature Communications, 15(1), 4808. [Google Scholar]
- Yan, X., Zou, Z., Zhu, H., Sun, H., & Liu, H. X. (2023). Learning Naturalistic Driving Environment with Statistical Realism. Nature Communications, 14, 2037. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.