Open Access
Issue |
ITM Web Conf.
Volume 76, 2025
Harnessing Innovation for Sustainability in Computing and Engineering Solutions (ICSICE-2025)
|
|
---|---|---|
Article Number | 01004 | |
Number of page(s) | 7 | |
Section | Artificial Intelligence & Machine Learning | |
DOI | https://doi.org/10.1051/itmconf/20257601004 | |
Published online | 25 March 2025 |
- Chen, L., Zhang, X., Liu, J., & Zhao, Y. (2020). A comprehensive survey on convolutional neural network-based image classification. IEEE Access, 8, 123456–123478. [Google Scholar]
- Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review, 53(8), 5455–5516. [CrossRef] [Google Scholar]
- Tan, M., & Le, Q. V. (2020). EfficientNet: Rethinking model scaling for convolutional neural networks. Proceedings of the International Conference on Machine Learning (ICML), 6105–6114. [Google Scholar]
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., & Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image recognition at scale. International Conference on Learning Representations (ICLR). [Google Scholar]
- He, K., Zhang, X., Ren, S., & Sun, J. (2021). Deep residual learning for image recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(8), 2553–2565. [Google Scholar]
- Liu, Z., Lin, Y., Cao, Y., & Guo, Y. (2021). Swin Transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 10012–10022. [Google Scholar]
- Deng, J., Gu, Y., Wang, X., & Li, J. (2021). Advances in lightweight convolutional neural networks for mobile applications. IEEE Transactions on Neural Networks and Learning Systems, 32(4), 1268–1282. [Google Scholar]
- Howard, A. G., Sandler, M., & Wang, W. (2021). Searching for MobileNetV3. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 11365–11374. [Google Scholar]
- Simonyan, K., & Zisserman, A. (2022). Very deep convolutional networks for large-scale image recognition. International Journal of Computer Vision, 130(4), 976–1002. [Google Scholar]
- Redmon, J., & Farhadi, A. (2022). YOLOv4: Optimal speed and accuracy of object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(1), 1–10. [Google Scholar]
- Zhou, D., Kang, B., Jin, X., & Yang, L. (2022). Deep convolutional models for remote sensing image classification. IEEE Geoscience and Remote Sensing Letters, 19, 120–130. [Google Scholar]
- Wu, Y., Chen, L., & Li, J. (2022). Attention-based convolutional networks for medical image classification. Journal of Biomedical Informatics, 128, 103937. [Google Scholar]
- Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2023). Densely connected convolutional networks. International Journal of Computer Vision, 131(2), 134–149. [Google Scholar]
- Chen, Y., Luo, S., & Xu, L. (2023). Vision transformers vs. CNNs: A comparative study on image classification. Pattern Recognition, 141, 109387. [Google Scholar]
- Dong, X., Wang, J., & Tang, M. (2023). Efficient CNN architectures for real-time image processing. IEEE Transactions on Image Processing, 32, 4567–4581. [Google Scholar]
- Ramesh, A., Pavlov, M., & Goh, G. (2023). Zero-shot text-to-image generation using transformers. Neural Information Processing Systems (NeurIPS). [Google Scholar]
- Shen, Y., Zheng, J., & Xu, M. (2023). CNN-based transfer learning for small-scale image datasets. Expert Systems with Applications, 215, 119098. [Google Scholar]
- Chen, L., Zhu, H., & Wu, X. (2024). Efficient deep CNN models for image classification on edge devices. IEEE Transactions on Emerging Topics in Computational Intelligence, 8(1), 55–68. [Google Scholar]
- Yang, K., Sun, H., & Lin, Y. (2024). Exploring self-supervised learning in CNN-based image classification. Pattern Recognition Letters, 176, 30–45. [Google Scholar]
- Zhang, R., Wang, F., & Li, J. (2024). Advancements in CNNs: Enhancing efficiency and generalization. Neural Networks, 174, 114–128. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.