Open Access
Issue |
ITM Web Conf.
Volume 76, 2025
Harnessing Innovation for Sustainability in Computing and Engineering Solutions (ICSICE-2025)
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 11 | |
Section | Artificial Intelligence & Machine Learning | |
DOI | https://doi.org/10.1051/itmconf/20257601007 | |
Published online | 25 March 2025 |
- Alsulami, F., Vinotha, C., Siddiqui, S., Saxena, R., Kankariya, R., & Suresh, M. (2024). Artificial Intelligence in Financial Markets: Predictive Models and Risk Management Strategies. International Journal of Financial Studies, 12(1), 1–15. researchgate.net [Google Scholar]
- Cheng, Q., Yang, L., Zheng, J., Tian, M., & Xin, D. (2024). Optimizing Portfolio Management and Risk Assessment in Digital Assets Using Deep Learning for Predictive Analysis. arXiv preprint arXiv:2402.15994. arxiv.org [Google Scholar]
- Yarbakhsh, R., Soleymani Baghshah, M., & Karimaghaie, H. (2023). Predicting Risk/Reward Ratio in Financial Markets for Asset Management Using Machine Learning. arXiv preprint arXiv:2311.09148. arxiv.org [Google Scholar]
- Danielsson, J., & Uthemann, A. (2024). On the Use of Artificial Intelligence in Financial Regulations and the Impact on Financial Stability. arXiv preprint arXiv:2406.02999. [Google Scholar]
- Danielsson, J., & Uthemann, A. (2024). Artificial Intelligence and Systemic Risk. arXiv preprint arXiv:2408.02999. [Google Scholar]
- Danielsson, J., & Uthemann, A. (2024). How the Financial Authorities Can Take Advantage of Artificial Intelligence. arXiv preprint arXiv:2403.02999. [Google Scholar]
- Danielsson, J., & Uthemann, A. (2024). Artificial Intelligence as a Central Banker. arXiv preprint arXiv:2403.02998. [Google Scholar]
- Yarbakh, R., Soleymani Baghshah, M., & Karimaghaie, H. (2023). Predicting risk/reward ratio in financial markets for asset management using machine learning. arXiv preprint arXiv:2311.09148. [Google Scholar]
- Cheng, Q., Yang, L., Zheng, J., Tian, M., & Xin, D. (2024). Optimizing portfolio management and risk assessment in digital assets using deep learning for predictive analysis. arXiv preprint arXiv:2402.15994. [Google Scholar]
- Bianchi, L., & Sadeghi, M. (2021). Machine Learning for Predictive Trading in Financial Markets: A Review. Journal of Computational Finance, 25(3), 215–238. [Google Scholar]
- Zhang, S., & Chen, Z. (2022). Predicting Stock Returns with Deep Learning: A Review and Future Directions. Journal of Finance and Data Science, 8(2), 130–145. [Google Scholar]
- Zhang, J., & Liu, X. (2021). Deep Reinforcement Learning for Stock Trading: A Survey. International Journal of Financial Engineering, 8(1), 45–60. [Google Scholar]
- Kumar, R., & Sharma, A. (2022). An Efficient Risk Management Framework for Financial Trading Using Artificial Intelligence. Journal of Risk and Financial Management, 15(4), 65–80. [Google Scholar]
- Lee, D., & Cho, K. (2021). A Hybrid Deep Learning Model for Predicting Stock Prices: A Case Study on the S&P 500. Journal of Economic and Financial Studies, 9(2), 200–215. [Google Scholar]
- Liu, F., & Wang, L. (2021). AI-Based Risk Assessment Models in Financial Trading: A Comparative Study. International Journal of Financial Risk Management, 6(4), 75–90. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.