Open Access
Issue
ITM Web Conf.
Volume 76, 2025
Harnessing Innovation for Sustainability in Computing and Engineering Solutions (ICSICE-2025)
Article Number 01009
Number of page(s) 9
Section Artificial Intelligence & Machine Learning
DOI https://doi.org/10.1051/itmconf/20257601009
Published online 25 March 2025
  1. Li, Y., Chen, X., Xu, Y., & Wang, K. (2023). AI-powered edge computing for real-time intelligent applications: A survey and future directions. IEEE Transactions on Industrial Informatics, 19(3), 2541–2556. https://doi.org/10.1109/TII.2023.3245678 [Google Scholar]
  2. Patel, R., & Gupta, S. (2022). Efficient model compression techniques for Edge AI deployment in resource-constrained environments. Journal of Systems Architecture, 130, 102635. https://doi.org/10.1016/j.sysarc.2022.102635 [Google Scholar]
  3. Zhao, J., Hu, W., & Xu, M. (2024). Lightweight deep learning models for edge-based real-time anomaly detection in IoT networks. IEEE Internet of Things Journal, 11(2), 1895–1910. https://doi.org/10.1109/JIOT.2024.3276598 [Google Scholar]
  4. Arjunan, G. (2023). Optimizing Edge AI for real-time data processing in IoT devices: Challenges and solutions. International Journal of Scientific Research and Management (IJSRM), 11(6), 944–953. [Google Scholar]
  5. Gujar, V. (2024). Data optimization using Edge AI: A framework for efficient real-time analytics - A case study of IndoAI AI camera. International Journal of Science and Research (IJSR), 13(10), 577–582. [Google Scholar]
  6. Mohan, N., & Welzl, M. (2024). Revisiting Edge AI: Opportunities and challenges. IEEE Internet Computing, 28(4), 49–53. [Google Scholar]
  7. Singh, J., Adams, B., & Hassan, A. E. (2024). On the impact of black-box deployment strategies for Edge AI on latency and model performance. arXiv preprint arXiv:2403.17154. [Google Scholar]
  8. Chen, X., Zhu, W., Chen, J., Zhang, T., Yi, C., & Cai, J. (2024). Edge computing enabled real-time video analysis via adaptive spatial-temporal semantic filtering. arXiv preprint arXiv:2402.18927. [Google Scholar]
  9. Smith, H., Seekings, J., Mohammadi, M., & Zand, R. (2024). Realtime facial expression recognition: Neuromorphic hardware vs. Edge AI accelerators. arXiv preprint arXiv:2403.08792. [Google Scholar]
  10. Gill, S. S., Golec, M., Hu, J., Xu, M., Du, J., Wu, H., & Uhlig, S. (2024). Edge AI: A taxonomy, systematic review and future directions. arXiv preprint arXiv:2407.04053. [Google Scholar]
  11. Anonymous. (2024). Generative AI on the Edge: Architecture and performance evaluation. arXiv preprint arXiv:2411.17712. [Google Scholar]
  12. Wang, X., Khan, A., Wang, J., Gangopadhyay, A., Busart, C. E., & Freeman, J. (2022). An edge-cloud integrated framework for flexible and dynamic stream analytics. arXiv preprint arXiv:2205.04622. [Google Scholar]
  13. Rivas, D., Guim, F., Polo, J., Silva, P. M., Berral, J. Ll., & Carrera, D. (2021). Towards automatic model specialization for edge video analytics. arXiv preprint arXiv:2104.06826. [Google Scholar]
  14. Gao, G., Dong, Y., Wang, R., & Zhou, X. (2022). EdgeVision: Towards collaborative video analytics on distributed edges for performance maximization. arXiv preprint arXiv:2211.03102. [Google Scholar]
  15. King, J., & Lee, Y. C. (2022). Distributed edge-based video analytics on the move. arXiv preprint arXiv:2206.14414. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.