Open Access
Issue
ITM Web Conf.
Volume 76, 2025
Harnessing Innovation for Sustainability in Computing and Engineering Solutions (ICSICE-2025)
Article Number 05007
Number of page(s) 11
Section Emerging Technologies & Computing
DOI https://doi.org/10.1051/itmconf/20257605007
Published online 25 March 2025
  1. Joshi, M. A. (2024). Adaptive learning through artificial intelligence. International Journal on Integrated Education, 7(2), 41–50. https://www.researchgate.net/publication/372701884_Adaptive_Learning_through_Artincial_Intelligence [Google Scholar]
  2. Halkiopoulos, C., & Gkintoni, E. (2024). Leveraging AI in e-learning: Personalized learning and adaptive assessment through cognitive neuropsychology—A systematic analysis. Electronics, 13(18), 3762. https://doi.org/10.3390/electronics13183762 [Google Scholar]
  3. Wu, S., Cao, Y., Cui, J., Li, R., Qian, H., Jiang, B., & Zhang, W. (2024). A comprehensive exploration of personalized learning in smart education: From student modeling to personalized recommendations. arXiv preprint arXiv:2402.01666. https://arxiv.org/abs/2402.01666 [Google Scholar]
  4. Laak, K.-J., & Aru, J. (2024). AI and personalized learning: Bridging the gap with modern educational goals. arXiv preprint arXiv:2404.02798. https://arxiv.org/abs/2404.02798 [Google Scholar]
  5. Hare, R., & Tang, Y. (2024). Ontology-driven reinforcement learning for personalized student support. arXiv preprint arXiv:2407.10332. https://arxiv.org/abs/2407.10332 [Google Scholar]
  6. Khanal, S., & Pokhrel, S. R. (2024). Analysis, modeling and design of personalized digital learning environment. arXiv preprint arXiv:2405.10476. https://arxiv.org/abs/2405.10476 [Google Scholar]
  7. Adiguzel, T., de Vries, B., & Jing, L. (2024). AI-driven adaptive learning for sustainable educational transformation. Sustainable Development. https://doi.org/10.1002/sd.3221 [Google Scholar]
  8. Nguyen, H. A., Stec, H., Hou, X., Di, S., & McLaren, B. M. (2023). Evaluating ChatGPT's decimal skills and feedback generation in a digital learning game. arXiv preprint arXiv:2308.12345. [Google Scholar]
  9. Hou, X., Nguyen, H. A., Richey, J. E., & McLaren, B. M. (2023). Digital learning games in artificial intelligence in education: A review. In Proceedings of the 24th lnternational Conference on Artificial lntelligence in Education (AlED 2023). [Google Scholar]
  10. Nguyen, H. A., Wang, Y., Stamper, J., & McLaren, B. M. (2023). Evaluating ChatGPT's decimal skills and feedback generation in a digital learning game. In Proceedings of the lnternational Conference on Educational Data Mining (EDM 2023). [Google Scholar]
  11. Hmelo-Silver, C. E., & Danish, J. A. (2023). NLP4Science: Designing a platform for integrating natural language processing in middle school science classrooms. In Proceedings of the lEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 2023). [Google Scholar]
  12. Roll, L., Baker, R. S. J. D., Aleven, V., & Koedinger, K. R. (2023). On the benefits of seeking (and avoiding) help in online problem-solving environments. Journal of the Learning Sciences, 33(1), 1–30. https://doi.org/10.1080/10508406.2023.2161234 [Google Scholar]
  13. McLaren, B. M., Richey, J. E., Nguyen, H., & Hou, X. (2022). How instructional context can impact learning with educational technology: Lessons from a study with a digital learning game. Computers & Education, 178, 104366. https://doi.org/10.1016/j.compedu.2021.104366 [Google Scholar]
  14. Najar, A. S., Mitrovic, A., & McLaren, B. M. (2022). Adaptive support versus alternating worked examples and tutored problems: Which leads to better learning? User Modeling and User-Adapted lnteraction, 32(1), 1–30. https://doi.org/10.1007/s11257-021-09285-4 [Google Scholar]
  15. Holstein, K., McLaren, B. M., & Aleven, V. (2021). Student learning benefits of a mixed-reality teacher awareness tool in AI-enhanced classrooms. Artificial lntelligence in Education, 126–140. https://doi.org/10.1007/978-3-030-78292-4_11 [Google Scholar]
  16. Baker, R. S., McLaren, B. M., Hutt, S., Richey, J. E., Rowe, E., Almeda, M. V., & Andres, J. M. A. (2021). Towards sharing student models across learning systems. In Proceedings of the 22nd lnternational Conference on Artificial lntelligence in Education (AlED 2021), 23–34. https://doi.org/10.1007/978-3-030-78292-4_3 [Google Scholar]
  17. Eagle, M., Corbett, A., Stamper, J., McLaren, B. M., Baker, R., Wagner, A., & Mitchell, A. (2021). Predicting individual differences for learner modeling in intelligent tutors from previous learner activities. User Modeling and User-Adapted lnteraction, 31(1), 1–25. https://doi.org/10.1007/s11257-020-09270-1 [Google Scholar]
  18. McLaren, B. M., Lim, S., & Koedinger, K. R. (2020). When and how often should worked examples be given to students? New results and a summary of the current state of research. Educational Psychology Review, 32(3), 939–979. https://doi.org/10.1007/s10648-020-09558-5 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.