Open Access
Issue
ITM Web Conf.
Volume 76, 2025
Harnessing Innovation for Sustainability in Computing and Engineering Solutions (ICSICE-2025)
Article Number 05012
Number of page(s) 9
Section Emerging Technologies & Computing
DOI https://doi.org/10.1051/itmconf/20257605012
Published online 25 March 2025
  1. Carvalho, T. P., Soares, F. A. A. M. N., Vita, R., Francisco, R. P., Basto, J. P., & Alcala, S. G. (2019). A systematic literature review of machine learning methods applied to predictive maintenance. Computers & Industrial Engineering, 137, 106024. [Google Scholar]
  2. Zonta, T., da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889. [Google Scholar]
  3. Serradilla, O., Zugasti, E., & Zurutuza, U. (2020). Deep learning models for predictive maintenance: A survey, comparison, challenges and prospect. arXiv preprint arXiv:2010.03207. [Google Scholar]
  4. Zheng, H., Paiva, A. R., & Gurciullo, C. S. (2020). Advancing from predictive maintenance to intelligent maintenance with AI and IIoT. arXiv preprint arXiv:2009.00351. [Google Scholar]
  5. Krupitzer, C., Wagenhals, T., Züfle, M., Lesch, V., Schäfer, D., Mozaffarin, A., Edinger, J., Becker, C., & Kounev, S. (2020). A survey on predictive maintenance for Industry 4.0. arXiv preprint arXiv:2002.08224. [Google Scholar]
  6. EshaghiChaleshtori, A., & Aghaie, A. (2022). Data fusion techniques for fault diagnosis of industrial machines: A survey. arXiv preprint arXiv:2211.09551. [Google Scholar]
  7. Pertselakis, M., Lampathaki, F., & Petrali, P. (2019). Predictive maintenance in a digital factory shop-floor: Data mining on historical and operational data coming from manufacturers' information systems. Procedia CIRP, 81, 417–422. [CrossRef] [Google Scholar]
  8. Dhamodharan, B. (2021). Optimizing industrial operations: A data-driven approach to predictive maintenance through machine learning. International Journal of Machine Learning and Soft Computing, 3(1), 1–7. [Google Scholar]
  9. Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2015). Machine learning for predictive maintenance: A multiple classifier approach. IEEE Transactions on Industrial Informatics, 11(3), 812–820. [CrossRef] [Google Scholar]
  10. Lee, J., & He, Y. (2020). Predictive maintenance using deep learning: A review and perspective. IEEE Transactions on Industrial Informatics, 16(10), 6315–6323. [Google Scholar]
  11. Wang, L., Wang, S., & Ren, J. (2021). Prognostics and health management: A review on data-driven methodologies. Reliability Engineering & System Safety, 212, 107651. [CrossRef] [Google Scholar]
  12. Li, S., & Zhao, Y. (2019). A review of predictive maintenance policy models for condition-based maintenance. IEEE Access, 7, 68271–68284. [CrossRef] [Google Scholar]
  13. Kumar, A., Hanif, M., & Kumar, A. (2018). Predictive maintenance in manufacturing industries: A systematic literature review. Procedia CIRP, 72, 161–166. [Google Scholar]
  14. Kao, A. (2019). Predictive maintenance modeling methods: A systematic literature review. Journal of Intelligent Manufacturing, 30(3), 1215–1231. [Google Scholar]
  15. Abidin, M. I. Z., & Arof, H. (2020). Predictive maintenance techniques in Industry 4.0: A review. Robotics and Computer-Integrated Manufacturing, 63, 101893. [Google Scholar]
  16. Wang, Y., & Shi, J. (2017). A survey on data-driven predictive maintenance of industrial systems. IEEE Transactions on Industrial Informatics, 13(3), 1397–1410. [Google Scholar]
  17. Aye, L., Teoh, S. L., & Tan, A. (2018). Predictive maintenance in manufacturing industry: A systematic literature review. Procedia Manufacturing, 25, 279–292. [Google Scholar]
  18. Jardine, A. K. S., & Tsang, A. H. C. (2020). Predictive maintenance—a perspective. Journal of Quality in Maintenance Engineering, 26(1), 50–67. [Google Scholar]
  19. Liao, H., & Wang, X. (2019). A survey on predictive maintenance strategy in manufacturing. Journal of Manufacturing Science and Engineering, 141(4), 040801. [Google Scholar]
  20. Kumar, A., & Hanif, M. (2019). Predictive maintenance in manufacturing industries: A literature review. International Journal of Recent Technology and Engineering, 8(3), 3480–3484. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.