Open Access
Issue |
ITM Web Conf.
Volume 77, 2025
2025 International Conference on Education, Management and Information Technology (EMIT 2025)
|
|
---|---|---|
Article Number | 01019 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/itmconf/20257701019 | |
Published online | 02 July 2025 |
- Endocrinology Branch of the Chinese Medical Association. Survey report on the prevalence of thyroid diseases in China [N]. Chinese Journal of Science, 2020-06-03 (Comprehensive 4th Edition ). [Google Scholar]
- Ronneberger O., Fischer P., Brox T.. U-Net: Convolutional Networks for Biomedical Image Segmentation.[J]. CoRR, 2015, abs/1505.04597 [Google Scholar]
- Milletari F., Navab N., Ahmadi S. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation.[J]. CoRR, 2016, abs/1606.04797 [Google Scholar]
- Chen J., Lu Y., Yu Q., et al. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation[J]. 2021. DOI:https://doi.org/10.48550/arXiv.2102.04306. [Google Scholar]
- He K., Zhang X., Ren S., et al. Deep Residual Learning for Image Recognition[J]. IEEE, 2016. DOI:10.1109/CVPR.2016.90. [Google Scholar]
- Szegedy C.L.W., Jia Y., et al. Going Deeper with Convolutions.[J]. CoRR, 2014, abs/1409.4842 [Google Scholar]
- Gong H., Chen G., Wang R., et al. Multi-task Learning for Thyroid Nodule Segmentation with Thyroid Region Prior[C]//International Symposium on Biomedical Imaging 2021.2021. DOI: 10.1109/ISBI48211.2021.9434087. [Google Scholar]
- Chang W.Y., Lin T.N. Vanishing Nodes: Another Phenomenon That Makes Training Deep Neural Networks Difficult[J]. 2019.DOI: https://doi.org/10.48550/arXiv.1910.09745. [Google Scholar]
- Woo S., Park J., Lee J.Y., et al. CBAM: Convolutional Block Attention Module[J]. Springer, Cham, 2018. DOI: 10.1007/978-3-030-01234-2_1. [Google Scholar]
- Zhou Z., Siddiquee M.M.R., Tajbakhsh N., et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation[J]. 2018. DOI: 10.1007/978-3-030-00889-5_1. [Google Scholar]
- Badrinarayanan V., Kendall A., Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.[J]. CoRR, 2015, abs/1511.00561 [Google Scholar]
- Yang Y.B. SA-Net: Shuffle Attention for Deep Convolutional Neural Networks[J]. 2021. DOI: 10.1109/ICASSP39728.2021.9414568. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.