Open Access
Issue |
ITM Web Conf.
Volume 77, 2025
2025 International Conference on Education, Management and Information Technology (EMIT 2025)
|
|
---|---|---|
Article Number | 01041 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/itmconf/20257701041 | |
Published online | 02 July 2025 |
- Omri N., Al Masry Z., Mairot N., et al. Industrial data management strategy towards an SME-oriented PHM[J]. Journal of Manufacturing Systems, 2020, 56: 23–36. [Google Scholar]
- Cheng C., Ma G., Zhang Y., et al. A deep learning-based remaining useful life prediction approach for bearings[J]. IEEE/ASME transactions on mechatronics, 2020, 25(3): 1243–1254. [Google Scholar]
- Zhao H., Liu H., Jin Y., et al. Feature extraction for data-driven remaining useful life prediction of rolling bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1–10. [Google Scholar]
- Mi J., Liu L., Zhuang Y., et al. A synthetic feature processing method for remaining useful life prediction of rolling bearings[J]. IEEE Transactions on Reliability, 2022, 72(1): 125–136. [Google Scholar]
- Zhu J., Chen N., Peng W. Estimation of bearing remaining useful life based on multiscale convolutional neural network[J]. IEEE Transactions on Industrial Electronics, 2018, 66(4): 3208–3216. [Google Scholar]
- He J., Wu C., Luo W., et al. Remaining Useful Life Prediction and Uncertainty Quantification for Bearings Based on Cascaded Multi-scale Convolutional Neural Network[J]. IEEE Transactions on Instrumentation and Measurement, 2023. [Google Scholar]
- Ma P., Li G., Zhang H., et al. Prediction of Remaining Useful Life of Rolling Bearings Based on Multiscale Efficient Channel Attention CNN and Bidirectional GRU[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1–13. [Google Scholar]
- Wen J.H., Wu R.S., Li S.Y., et al. Bearing residual life prediction method based on DRSN and optimized BiLSTM[J]. Computer Integrated Manufacturing System, 2024, 30(5): 1877–1888. [Google Scholar]
- Li W., Zhang L.C., Wu C.H., et al. A data-driven approach to RUL prediction of tools[J]. Advances in Manufacturing, 2024, 12(1): 6–18. [CrossRef] [Google Scholar]
- Magadán L., Granda J.C., Suárez F.J.. Robust prediction of remaining useful lifetime of bearings using deep learning[J]. Engineering Applications of Artificial Intelligence, 2024, 130: 107690. [Google Scholar]
- Liu J., Yang Z., Xie J., et al. A Feature Fusion-Based Method for Remaining Useful Life Prediction of Rolling Bearings[J]. IEEE Transactions on Instrumentation and Measurement, 2023. [Google Scholar]
- Que Z., Jin X., Xu Z. Remaining useful life prediction for bearings based on a gated recurrent unit[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1–11. [Google Scholar]
- Huang CG, Huang HZ, Li YF, et al. A novel deep convolutional neural network-bootstrap integrated method for RUL prediction of rolling bearing[J]. Journal of Manufacturing Systems, 2021, 61: 757–772. [Google Scholar]
- Zhu Q., Xiong Q., Yang Z., et al. RGCNU: Recurrent Graph Convolutional Network With Uncertainty Estimation for Remaining Useful Life Prediction[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(7): 1640–1642. [Google Scholar]
- Wang Z., Yan W., Oates T. Time series classification from scratch with deep neural networks: A strong baseline[C]//2017 International joint conference on neural networks (IJCNN). IEEE, 2017: 1578–1585. [CrossRef] [Google Scholar]
- Wang B., Lei Y., Li N., et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2018, 69(1): 401–412. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.