Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 01006
Number of page(s) 7
Section Deep Learning and Reinforcement Learning – Theories and Applications
DOI https://doi.org/10.1051/itmconf/20257801006
Published online 08 September 2025
  1. Eimer, T., Lindauer, M., Raileanu, R.: 'Hyperparameters in reinforcement learning and how to tune them'. Proc. Int. Conf. Mach. Learn. (ICML), July 14, pp. 9104 [Google Scholar]
  2. Mnih, V., Kavukcuoglu, K., Silver, D., et al.: 'Human-level control through deep reinforcement learning', Nature, 2015, 518, (7540), pp. 529–533 [NASA ADS] [CrossRef] [Google Scholar]
  3. Even-Dar, E., Mansour, Y., Bartlett, P.: 'Learning rates for Q-learning', J. Mach. Learn. Res., 2003, 5, (1) [Google Scholar]
  4. Yu, T., Zhu, H.: 'Hyper-parameter optimization: A review of algorithms and applications', arXiv preprint, 2020, arXiv:2003.05689 [Google Scholar]
  5. Li, L., Jamieson, K., Rostamizadeh, A., et al.: 'Massively parallel hyperparameter tuning', arXiv preprint, 2018, arXiv:1810.05934 [Google Scholar]
  6. Hutter, F., Hoos, H.H., Leyton-Brown, K.: 'Sequential model-based optimization for general algorithm configuration'. Proc. 5th Int. Conf. Learn. Intell. Optim. (LION), Rome, Italy, January 14, pp. 507 [Google Scholar]
  7. Xu, C., Qin, T., Wang, G., Liu, T.Y.: 'Reinforcement learning for learning rate control', arXiv preprint, 2017, arXiv:1705.11159 [Google Scholar]
  8. Kiran, M., Ozyildirim, M.: 'Hyperparameter tuning for deep reinforcement learning applications', arXiv preprint, 2022, arXiv:2201.11182 [Google Scholar]
  9. Kumar, S.: 'Balancing a CartPole system with reinforcement learning–A tutorial', arXiv preprint, 2020, arXiv:2006.04938 [Google Scholar]
  10. Akiba, T., Sano, S., Yanase, T., et al.: 'Optuna: A next-generation hyperparameter optimization framework'. Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. (KDD), July 14, pp. 2623 [Google Scholar]
  11. Glorot, X., Bordes, A., Bengio, Y.: 'Deep sparse rectifier neural networks'. Proc. 14th Int. Conf. Artif. Intell. Stat. (AISTATS), June 14, pp. 315 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.