Open Access
| Issue |
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
|
|
|---|---|---|
| Article Number | 01038 | |
| Number of page(s) | 7 | |
| Section | Deep Learning and Reinforcement Learning – Theories and Applications | |
| DOI | https://doi.org/10.1051/itmconf/20257801038 | |
| Published online | 08 September 2025 | |
- Christiano, P. F., Leike, J., Brown, T. B., Martic, M., Legg, S., Amodei, D.: “Deep Reinforcement Learning from Human Preferences,” ArXiv, 2017, abs/1706.03741. [Google Scholar]
- Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L. E., Simens, M., Askell, A., Welinder, P., Christiano, P. F., Leike, J., Lowe, R. J.: “Training Language Models to Follow Instructions with Human Feedback,” ArXiv, 2022, abs/2203.02155. [Google Scholar]
- Liu, R., Bai, F., Du, Y., Yang, Y.: “Meta-Reward-Net: implicitly differentiable reward learning for preference-based reinforcement learning,” Proceedings of the 36th International Conference on Neural Information Processing Systems (NeurIPS ’22), 2022, Article 1618, pp. 22270–22284. [Google Scholar]
- Wikipedia contributors: “Reinforcement learning from human feedback,” Wikipedia, The Free Encyclopedia, 20 Feb. 2025. Accessed 27 Mar. 2025. [Google Scholar]
- Holk, S.: “Improving Sample-efficiency of Reinforcement Learning from Human Feedback,” (Doctoral dissertation, KTH Royal Institute of Technology), 2025. [Google Scholar]
- Wang, Y., Zhong, W., Li, L., Mi, F., Zeng, X., Huang, W., Shang, L., Jiang, X., Li, Q.: “Aligning Large Language Models with Human: A Survey,” ArXiv, 2023, abs/2307.12966. [Google Scholar]
- Zeng, Y., Liu, G., Ma, W., Yang, N., Zhang, H., Wang, J.: “Token-level Direct Preference Optimization,” ArXiv, 2024, abs/2404.11999. [Google Scholar]
- Sun, H.: “Reinforcement Learning in the Era of LLMs: What is Essential? What is Needed? An RL Perspective on RLHF, Prompting, and Beyond,” ArXiv, 2023, abs/2310.06147. [Google Scholar]
- Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Dassarma, N., Drain, D., Fort, S., Ganguli, D., Henighan, T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T., El-Showk, S., Elhage, N., Hatfield-Dodds, Z., Hernandez, D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda, N., Olsson, C., Amodei, D., Brown, T. B., Clark, J., McCandlish, S., Olah, C., Mann, B., Kaplan, J.: “Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback,” ArXiv, 2022, abs/2204.05862. [Google Scholar]
- Li, P..: “Gemini: A Family of Highly Capable Multimodal Models,” ArXiv, 2023, abs/2312.11805. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

