Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 02008
Number of page(s) 10
Section Machine Learning Applications in Vision, Security, and Healthcare
DOI https://doi.org/10.1051/itmconf/20257802008
Published online 08 September 2025
  1. Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G.: 'A survey of deep learning techniques for autonomous driving', J. Field Robot., 2020, 37, (3), pp. 362–386 [Google Scholar]
  2. Zhao, Z. Q., Huang, D. S., Sun, B. Y.: 'Human face recognition based on multi-features using neural networks committee', Pattern Recognit. Lett., 2004, 25, (12), pp. 1351–1358 [Google Scholar]
  3. Goodfellow, I. J., Shlens, J., Szegedy, C.: 'Explaining and Harnessing Adversarial Examples', 2014. Available at: http://arxiv.org/abs/1412.6572 [Google Scholar]
  4. Wang, J., Wang, C., Lin, Q., Luo, C., Wu, C., Li, J.: 'Adversarial attacks and defenses in deep learning for image recognition: A survey', Neurocomputing, 2022, 514, pp. 162–181 [CrossRef] [Google Scholar]
  5. Gu, S., Rigazio, L.: 'Towards Deep Neural Network Architectures Robust to Adversarial Examples', 2014. Available at: http://arxiv.org/abs/1412.5068 [Google Scholar]
  6. Zhang, Z., Zeng, Y., Liu, Q., Zhou, S.: 'Towards a Novel Perspective on Adversarial Examples Driven by Frequency', 2024. Available at: http://arxiv.org/abs/2404.10202 [Google Scholar]
  7. Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., Ma, Y.: 'Robust face recognition via sparse representation', IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 210–227 [Google Scholar]
  8. Wallace, G. K.: 'The JPEG still picture compression standard', 1992 [Google Scholar]
  9. Dziugaite, G. K., Ghahramani, Z., Roy, D. M.: 'A study of the effect of JPG compression on adversarial images', 2016. Available at: http://arxiv.org/abs/1608.00853 [Google Scholar]
  10. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: 'Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising', IEEE Trans. Image Process., 2017, 26, (7), pp. 3142–3155 [Google Scholar]
  11. Rakin, A. S., He, Z., Gong, B., Fan, D.: 'Blind Pre-Processing: A Robust Defense Method Against Adversarial Examples', 2018. Available at: http://arxiv.org/abs/1802.01549 [Google Scholar]
  12. Xie, C., Wang, J., Zhang, Z., Ren, Z., Yuille, A.: 'Mitigating Adversarial Effects Through Randomization', 2017. Available at: http://arxiv.org/abs/1711.01991 [Google Scholar]
  13. Szegedy, C., et al.: 'Intriguing properties of neural networks', 2013. Available at: http://arxiv.org/abs/1312.6199 [Google Scholar]
  14. Liao, F., Liang, M., Dong, Y., Pang, T., Hu, X., Zhu, J.: 'Defense against Adversarial Attacks Using High-Level Representation Guided Denoiser'. Available at: https://github.com/lfz/Guided-Denoise [Google Scholar]
  15. Shin, R., Song, D.: 'JPEG-resistant Adversarial Images'. Available at: https://github.com/tensorflow/models/tree/master/research/slim [Google Scholar]
  16. Das, N., et al.: 'Keeping the Bad Guys Out: Protecting and Vaccinating Deep Learning with JPEG Compression', 2017. Available at: http://arxiv.org/abs/1705.02900 [Google Scholar]
  17. Vakhshiteh, F., Nickabadi, A., Ramachandra, R.: 'Adversarial Attacks against Face Recognition: A Comprehensive Study', IEEE Access, 2021, 9, pp. 92735–92756 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.