Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 02010
Number of page(s) 10
Section Machine Learning Applications in Vision, Security, and Healthcare
DOI https://doi.org/10.1051/itmconf/20257802010
Published online 08 September 2025
  1. Blancaflor, E., Calida, M. B., Chan, M., et al.: 'Impact Analysis and Attack Simulation on Quishing (a QC Code Phishing) using QRLJacker', Proc. 2024 Int. Conf. Electrical, Computer and Energy Technologies (ICECET), July 2024, pp. 1–5, (IEEE) [Google Scholar]
  2. Lamina, O. A., Ayuba, W. A., Adebiyi, O. E., et al.: 'AI-Powered Phishing Detection and Prevention', Path of Science, 2024, 10, (12), pp. 4001–4010 [Google Scholar]
  3. Adewole, K. S., Akintola, A. G., Salihu, S. A., et al.: 'Hybrid Rule-Based Model for Phishing URLs Detection', in Emerging Technologies in Computing: Second International Conference, iCETiC 2019, London, UK, August 2019, pp. 119–135, (Springer International Publishing) [Google Scholar]
  4. Liu, R., Lin, Y., Yang, X., et al.: 'Inferring Phishing Intention via Webpage Appearance and Dynamics: A Deep Vision Based Approach', Proc. 31st USENIX Security Symposium (USENIX Security 22), August 2022, pp. 1633–1650 [Google Scholar]
  5. Yang, L., Zhang, J., Wang, X., et al.: 'An Improved ELM-Based and Data Preprocessing Integrated Approach for Phishing Detection Considering Comprehensive Features', Expert Systems with Applications, 2021, 165, pp. 113863 [Google Scholar]
  6. Safi, A., Singh, S.: 'A Systematic Literature Review on Phishing Website Detection Techniques', Journal of King Saud University-Computer and Information Sciences, 2023, 35, (2), pp. 590–611 [Google Scholar]
  7. Barraclough, P. A., Fehringer, G., Woodward, J.: 'Intelligent Cyber-Phishing Detection for Online', Computers & Security, 2021, 104, pp. 102123 [Google Scholar]
  8. Rao, R. S., Ali, S. T.: 'Phishshield: A Desktop Application to Detect Phishing Webpages through Heuristic Approach', Procedia Computer Science, 2015, 54, pp. 147–156 [Google Scholar]
  9. Basit, A., Zafar, M., Liu, X., et al.: 'A Comprehensive Survey of AI-Enabled Phishing Attacks Detection Techniques', Telecommunication Systems, 2021, 76, pp. 139–154 [CrossRef] [PubMed] [Google Scholar]
  10. Tang, L., Mahmoud, Q. H.: 'A Survey of Machine Learning-Based Solutions for Phishing Website Detection', Machine Learning and Knowledge Extraction, 2021, 3, (3), pp. 672–694 [Google Scholar]
  11. Azeez, N. A., Misra, S., Margaret, I. A., et al.: 'Adopting Automated Whitelist Approach for Detecting Phishing Attacks', Computers & Security, 2021, 108, pp. 102328 [Google Scholar]
  12. Bell, S., Komisarczuk, P.: 'An Analysis of Phishing Blacklists: Google Safe Browsing, Openphish, and Phishtank', Proc. Australasian Computer Science Week Multiconference, February 2020, pp. 1–11 [Google Scholar]
  13. Aljofey, A., Jiang, Q., Rasool, A., et al.: 'An Effective Detection Approach for Phishing Websites using URL and HTML Features', Scientific Reports, 2022, 12, (1), pp. 8842 [Google Scholar]
  14. Sheng, S., Wardman, B., Warner, G., et al.: 'An Empirical Analysis of Phishing Blacklists', 2009 [Google Scholar]
  15. Samad, D., Gani, G. A.: 'Analyzing and Predicting Spear-Phishing using Machine Learning Methods', Multidiszciplináris Tudományok, 2020, 10, (4), pp. 262–273 [Google Scholar]
  16. Ramanathan, V., Wechsler, H.: 'phishGILLNET—Phishing Detection Methodology using Probabilistic Latent Semantic Analysis, AdaBoost, and Co-Training', EURASIP Journal on Information Security, 2012, 2012, pp. 1–22 [Google Scholar]
  17. Valentim, R., Drago, I., Trevisan, M., et al.: 'Augmenting Phishing Squatting Detection with GANs', Proc. CoNEXT Student Workshop, Virtual Event, December 2021, pp. 3–4 [Google Scholar]
  18. Alnemari, S., Alshammari, M.: 'Detecting Phishing Domains using Machine Learning', Applied Sciences, 2023, 13, (8), pp. 4649 [Google Scholar]
  19. Varshney, G., Misra, M., Atrey, P. K.: 'A Survey and Classification of Web Phishing Detection Schemes', Security and Communication Networks, 2016, 9, (18), pp. 6266–6284 [Google Scholar]
  20. Alshingiti, Z., Alaqel, R., Al-Muhtadi, J., et al.: 'A Deep Learning-Based Phishing Detection System using CNN, LSTM, and LSTM-CNN', Electronics, 2023, 12, (1), pp. 232 [CrossRef] [Google Scholar]
  21. Alazaidah, R., Al-Shaikh, A., Al-Mousa, M. R., et al.: 'Website Phishing Detection using Machine Learning Techniques', Journal of Statistics Applications & Probability, 2024, 13, (1) [Google Scholar]
  22. Singh, K., Aggarwal, P., Rajivan, P., et al.: 'Cognitive Elements of Learning and Discriminability in Anti-Phishing Training', Computers & Security, 2023, 127, pp. 103105 [Google Scholar]
  23. Lee, M., Park, E.: 'Real-Time Korean Voice Phishing Detection Based on Machine Learning Approaches', Journal of Ambient Intelligence and Humanized Computing, 2023, 14, (7), pp. 8173–8184 [Google Scholar]
  24. Torrey, L., Shavlik, J.: 'Transfer Learning', in Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, 2010, pp. 242–264, (IGI Global) [Google Scholar]
  25. Wei, B., Hamad, R. A., Yang, L., et al.: 'A Deep-Learning-Driven Light-Weight Phishing Detection Sensor', Sensors, 2019, 19, (19), pp. 4258 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.