Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 02018
Number of page(s) 11
Section Machine Learning Applications in Vision, Security, and Healthcare
DOI https://doi.org/10.1051/itmconf/20257802018
Published online 08 September 2025
  1. Al-Qershi, O.M., Khoo, B.E.: 'Passive detection of copy-move forgery in digital images: State-of-the-art', Forensic Sci. Int., 2013, 231, (1-3), pp. 284–295 [Google Scholar]
  2. Warif, N.B.A., Wahab, A.W.A., Idris, M.Y.I., et al.: 'Copy-move forgery detection: survey, challenges and future directions', J. Netw. Comput. Appl., 2016, 75, pp. 259–278 [Google Scholar]
  3. Christlein, V., Riess, C., Jordan, J., et al.: 'An evaluation of popular copy-move forgery detection approaches', IEEE Trans. Inf. Forensics Security, 2012, 7, (6), pp. 1841–1854 [Google Scholar]
  4. Fridrich, J., Soukal, D., Lukas, J.: 'Detection of copy-move forgery in digital images'. Proc. Digit. Forensic Res. Workshop (DFRWS), Baltimore, USA, Aug. 2003, pp. 652–663 [Google Scholar]
  5. Cozzolino, D., Poggi, G., Verdoliva, L.: 'Efficient dense-field copy-move forgery detection', IEEE Trans. Inf. Forensics Security, 2015, 10, (11), pp. 2284–2297 [Google Scholar]
  6. Lowe, D.G.: 'Distinctive image features from scale-invariant keypoints', Int. J. Comput. Vis., 2004, 60, pp. 91–110 [CrossRef] [Google Scholar]
  7. Pan, X., Lyu, S.: 'Region duplication detection using image feature matching', IEEE Trans. Inf. Forensics Security, 2010, 5, (4), pp. 857–867 [Google Scholar]
  8. Amerini, I., Ballan, L., Caldelli, R., et al.: 'A SIFT-based forensic method for copy-move attack detection and transformation recovery', IEEE Trans. Inf. Forensics Security, 2011, 6, (3), pp. 1099–1110 [Google Scholar]
  9. Hastie, T., Tibshirani, R., Friedman, J.: 'The elements of statistical learning' (Springer, New York, NY, USA, 2009) [Google Scholar]
  10. Amerini, I., Ballan, L., Caldelli, R., et al.: 'Copy-move forgery detection and localization by means of robust clustering with J-Linkage', Signal Process. Image Commun., 2013, 28, (6), pp. 659–669 [Google Scholar]
  11. Li, Y., Zhou, J.: 'Fast and effective image copy-move forgery detection via hierarchical feature point matching', IEEE Trans. Inf. Forensics Security, 2019, 14, (5), pp. 1307–1322 [Google Scholar]
  12. Dabhole, S.D., Rajput, G.G., Ullat, V., et al.: 'Copy-move image forgery detection and classification using SIFT and DBSCAN approaches'. Proc. 15th Int. Conf. Comput. Commun. Netw. Technol. (ICCCNT), Kharagpur, India, Jul. 2024, pp. 1–7 [Google Scholar]
  13. Ng, T.-T., Chang, S.-F., Hsu, J., Pepeljugoski, M.: 'Columbia photographic images and photorealistic computer graphics dataset' (Columbia University, 2004) [Google Scholar]
  14. Kanan, C., Cottrell, G.W.: 'Color-to-grayscale: does the method matter in image recognition', PLoS One, 2012, 7, (1), pp. 1–7 [Google Scholar]
  15. Amerini, I., Ballan, L., Caldelli, R., et al.: 'A SIFT-based forensic method for copy-move attack detection and transformation recovery', IEEE Trans. Inf. Forensics Security, 2011, 6, (3), pp. 1099–1110 [Google Scholar]
  16. Khan, U.A., Feng, K., Arif, M.S., et al.: 'A hybrid technique for copy-move image forgery detection'. Proc. 3rd Int. Conf. Comput. Commun. Syst. (ICCCS), Nagoya, Japan, Apr. 2018, pp. 1–6 [Google Scholar]
  17. Suresh, G., Srinivasa Rao, C.: 'RST invariant image forgery detection', Indian J. Sci. Technol., 2016, 9, (22), pp. 1–8 [Google Scholar]
  18. Rajput, G.G., Dabhole, S.D.: 'Keypoint-based copy-move area detection'. Proc. Int. Conf. Innovative Comput. Commun. (ICICC), Singapore, Feb. 2023, pp. 1–7 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.