Open Access
| Issue |
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
|
|
|---|---|---|
| Article Number | 02023 | |
| Number of page(s) | 7 | |
| Section | Machine Learning Applications in Vision, Security, and Healthcare | |
| DOI | https://doi.org/10.1051/itmconf/20257802023 | |
| Published online | 08 September 2025 | |
- Chan, P., Stolfo, S.: 'Toward scalable learning with non-uniform class and cost distributions', Proc. Int. Conf. Knowledge Discovery & Data Mining, 2008 [Google Scholar]
- Chan, P.K., Fan, W., Prodromidis, A.L., Stolfo, S.J.: 'Distributed data mining in credit card fraud detection', IEEE Intell. Syst., 2015, 14 (6), pp. 67–74 [Google Scholar]
- Brause, R., Langsdorf, T., Hepp, M.: 'Neural data mining for credit card fraud detection', Proc. IEEE Int. Conf. Tools with Artificial Intelligence, 2016 [Google Scholar]
- Yao, Z.: 'Application of ensemble classifiers in credit card fraud detection', PhD thesis, Chongqing University, 2019 [Google Scholar]
- Khan, M.Z., Shaikh, S.A., Shaikh, M.A., et al.: 'The performance analysis of machine learning algorithms for credit card fraud detection', Int. J. Online Biomed. Eng., 2023, 19 (3), pp. 82–98 [Google Scholar]
- Vaquero, P.R.: 'Literature review of credit card fraud detection with machine learning', 2023 [Google Scholar]
- Nguyen, T.T., Tahir, H., Abdelrazek, M., Babar, A.: 'Deep learning methods for credit card fraud detection', 2020 [Google Scholar]
- Lin, T.H., Jiang, J.R.: 'Credit card fraud detection with autoencoder and probabilistic random forest', Mathematics, 2021, 9 (21), 2683 [Google Scholar]
- Asha, R.B., KR, S.K.: 'Credit card fraud detection using artificial neural network', Glob. Trans. Proc., 2021, 2 (1), pp. 35–41 [Google Scholar]
- Liu, G., Tang, J., Tian, Y., Wang, J.: 'Graph neural network for credit card fraud detection', Proc. 2021 Int. Conf. Cyber-Phys. Soc. Intell. (ICCSI), 2021, pp. 1–6 [Google Scholar]
- Benchaji, I., et al.: 'Enhanced credit card fraud detection based on attention mechanism and LSTM deep model', J. Big Data, 2021, 8, pp. 1–21 [CrossRef] [Google Scholar]
- Fiore, U., De Santis, A., Perla, F., Zanetti, P., Palmieri, F.: 'Using generative adversarial networks for improving classification effectiveness in credit card fraud detection', Inf. Sci., 2019, 479, pp. 448–455 [Google Scholar]
- Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: 'SMOTE: synthetic minority over-sampling technique', J. Artif. Intell. Res., 2002, 16, pp. 321–357 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

