Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 03014
Number of page(s) 11
Section Intelligent Systems and Computing in Industry, Robotics, and Smart Infrastructure
DOI https://doi.org/10.1051/itmconf/20257803014
Published online 08 September 2025
  1. National Highway Traffic Safety Administration (NHTSA). (2022). Drowsy Driving Report. [Google Scholar]
  2. Wang, Z., & He, Y. (2020). "A Survey of Vision-Based Driver Fatigue Detection." IEEE Transactions on Human-Machine Systems, 50(3), 234–245. [Google Scholar]
  3. Lawhern, V. J., et al. (2018). "EEGNet: A Compact Convolutional Neural Network for EEG-Based Brain-Computer Interfaces." Journal of Neural Engineering, 15(5), 056013. [Google Scholar]
  4. Ayachi, R., et al. (2021). "Driver Fatigue Detection Using EfficientDet in Advanced Driver Assistance Systems." IEEE Access, 9, 123456–123467. [Google Scholar]
  5. Tan, M., Pang, R., & Le, Q. V. (2020). EfficientDet: Scalable and Efficient Object Detection. CVPR. [Google Scholar]
  6. Tan, M.& Le, Q. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Proceedings of the 36thInternational Conference on Machine Learning, inPLR97:6105-6114. [Google Scholar]
  7. Weng, C. H., Lai, Y. H., & Lai, S. H. (2016). Driver Drowsiness Detection via a Hierarchical Temporal Deep Belief Network. Asian Conference on Computer Vision. [Google Scholar]
  8. Jabbar, R., Al-Khalifa, K., & Kharbeche, M. (2018). Real-Time Driver Drowsiness Detection Using Deep Learning. Procedia Computer Science, 130, 400–407. [Google Scholar]
  9. Howard AG, Zhu M, Chen B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv:1704.04861, 2017.He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition. [Google Scholar]
  10. Lawhern, V. J., et al. (2018). EEGNet: A Compact Convolutional Network for EEG-Based BCIs. Journal of Neural Engineering, 15(5), 056013. [Google Scholar]
  11. Redmon, J., et al. (2016). Real-Time Distributed Deployment for ADAS. CVPR. [Google Scholar]
  12. Zheng, W. L., & Lu, B. L. (2015). Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks. IEEE Transactions on Autonomous Mental Development. [Google Scholar]
  13. Arefnezhad, S., et al. (2019). DROZY: A Long-Term Multimodal Dataset for Driver Behavior Analysis. IEEE Intelligent Vehicles Symposium. [Google Scholar]
  14. Wang, L., et al. (2022). Transformer-Based Multimodal Fusion for Driver State Monitoring. IEEE Transactions on Intelligent Vehicles. [Google Scholar]
  15. Yang, Q., et al. (2019). Federated Machine Learning: Concept and Applications. ACM Transactions on Intelligent Systems and Technology. [Google Scholar]
  16. Li, T., et al. (2022). Federated Learning for Driver Monitoring: Balancing Privacy and Performance. IEEE Transactions on Vehicular Technology. [Google Scholar]
  17. Abadi, M., et al. (2016). Deep Learning with Differential Privacy. ACM SIGSAC Conference on Computer and Communications Security. [Google Scholar]
  18. Vaswani, A., et al. (2017). Attention Is All You Need. NeurIPS. [Google Scholar]
  19. Wang, L., et al. (2023). Vision-EEG Transformer for Occlusion-Robust Fatigue Detection. IEEE Transactions on Intelligent Transportation Systems. [Google Scholar]
  20. Mehta, S., & Rastegari, M. (2022). MobileViT: Lightweight, General-Purpose, and Mobile-Friendly Vision Transformer. ICLR. [Google Scholar]
  21. NVIDIA. (2021). NVIDIA DRIVE AGX Xavier Series Datasheet. NVIDIA Corporation. [Google Scholar]
  22. ISO 26262. (2018). Road Vehicles - Functional Safety. International Organization for Standardization. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.