Open Access
| Issue |
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
|
|
|---|---|---|
| Article Number | 04003 | |
| Number of page(s) | 12 | |
| Section | Foundations and Frontiers in Multimodal AI, Large Models, and Generative Technologies | |
| DOI | https://doi.org/10.1051/itmconf/20257804003 | |
| Published online | 08 September 2025 | |
- Rieke, N., Hancox, J., Li, W., Milletarì, F., Roth, H. R., Albarqouni, S., & Cardoso, M. J.: ‘The future of digital health with federated learning’, NPJ Digital Medicine, 2020, 3, pp. 119. [Google Scholar]
- McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A.: ‘Communication-efficient learning of deep networks from decentralized data’, In Artificial intelligence and statistics (pp. 1273–1282). PMLR, April 2017. [Google Scholar]
- Geiping, J., Bauermeister, H., Dröge, H., & Moeller, M.: ‘Inverting gradients-how easy is it to break privacy in federated learning’. Advances in neural information processing systems, 2020, 33, pp. 16937–16947. [Google Scholar]
- Makkar, A., & Santosh, K. C.: ‘SecureFed: federated learning empowered medical imaging technique to analyze lung abnormalities in chest X-rays’, International Journal of Machine Learning and Cybernetics, 2023, 14(8), pp. 2659–2670. [Google Scholar]
- Exploiting unintended feature leakage in collaborative learning. In 2019 IEEE symposium on security and privacy (SP) (pp. 691–706). IEEE. [Google Scholar]
- Wang, H., Eklund, D., Oprea, A., & Raza, S.: ‘FL4IoT: IoT device fingerprinting and identification using federated learning’, ACM Transactions on Internet of Things, 2023, 4(3), pp. 1–24. [Google Scholar]
- Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., & Seth, K.: ‘Practical secure aggregation for federated learning on user-held data’. arXiv preprint arXiv:1611.04482, 2016. [Google Scholar]
- Nasr, M., Shokri, R., & Houmansadr, A.: ‘Comprehensive privacy analysis of deep learning’. Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), Vol. 2018, pp. 1–15. [Google Scholar]
- Little, C., Elliot, M., & Allmendinger, R.: ‘Federated learning for generating synthetic data: a scoping review’, International Journal of Population Data Science, 2023, 8(1), pp. 2158. [Google Scholar]
- Yin, H., Mallya, A., Vahdat, A., Alvarez, J. M., Kautz, J., & Molchanov, P.: ‘See through gradients: Image batch recovery via gradinversion’. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 16337–16346), 2021. [Google Scholar]
- Feng, T., Hashemi, H., Hebbar, R., Annavaram, M., & Narayanan, S. S.: ‘Attribute inference attack of speech emotion recognition in federated learning settings’. arXiv preprint arXiv:2112.13416, 2021. [Google Scholar]
- Zheng, H., Hu, H., & Han, Z.: ‘Preserving user privacy for machine learning: Local differential privacy or federated machine learning?’, IEEE Intelligent Systems, 2020, 35(4), pp. 5–14. [Google Scholar]
- Truex, S., Liu, L., Chow, K. H., Gursoy, M. E., & Wei, W.: ‘LDP-Fed: Federated learning with local differential privacy’. In Proceedings of the third ACM international workshop on edge systems, analytics and networking (pp. 61–66), April 2020. [Google Scholar]
- Wang, Y. X., Lei, J., & Fienberg, S. E.: ‘Learning with differential privacy: Stability, learnability and the sufficiency and necessity of ERM principle’, Journal of Machine Learning Research, 2016, 17(183), pp. 1–40. [Google Scholar]
- Ronald Cramer, Ivan Damgärd, Jesper Buus Nielsen. “Multiparty Computation from Threshold Homomorphic Encryption” [Google Scholar]
- Mouchet, C. V.: ‘Multiparty homomorphic encryption: From theory to practice’, Doctoral dissertation, EPFL, 2023. [Google Scholar]
- Kumar, A. V., Sujith, M. S., Sai, K. T., Rajesh, G., & Yashwanth, D. J. S.: ‘Secure Multiparty computation enabled E-Healthcare system with Homomorphic encryption’. In IOP Conference Series: Materials Science and Engineering, Vol. 981, No. 2, p. 022079, December 2020. [Google Scholar]
- Feng, Q., He, D., Zeadally, S., Khan, M. K., & Kumar, N.: ‘A survey on privacy protection in blockchain system’, Journal of network and computer applications, 2019, 126, pp. 45–58. [Google Scholar]
- Qi, M., Wang, Z., Han, Q. L., Zhang, J., Chen, S., & Xiang, Y.: ‘Privacy protection for blockchain-based healthcare IoT systems: A survey’, IEEE/CAA Journal of Automatica Sinica, 2022. [Google Scholar]
- Ma, M., Shi, G., & Li, F.: ‘Privacy-oriented blockchain-based distributed key management architecture for hierarchical access control in the IoT scenario’, IEEE Access, 2019, 7, pp. 34045–34059. [Google Scholar]
- Binjubeir, M., Ahmed, A. A., Ismail, M. A. B., Sadiq, A. S., & Khan, M. K.: ‘Comprehensive survey on big data privacy protection’, IEEE Access, 2019, 8, pp. 20067–20079. [Google Scholar]
- Lee, J., & Kifer, D.: ‘Concentrated differentially private gradient descent with adaptive per-iteration privacy budget’, In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1656–1665), July 2018. [Google Scholar]
- Ahmadian, A. S., Strüber, D., Riediger, V., & Jürjens, J.: ‘Supporting privacy impact assessment by model-based privacy analysis’. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (pp. 1467–1474), April 2018. [Google Scholar]
- Novado, D., Cohen, E., & Foster, J.: ‘Multi-tier privacy protection for large language models using differential privacy’. Authorea Preprints, 2024. [Google Scholar]
- Solove, D. J., & Hoofnagle, C. J.: ‘A model regime of privacy protection’, U. Ill. L. Rev., 2006, pp. 357. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

