Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 04015
Number of page(s) 8
Section Foundations and Frontiers in Multimodal AI, Large Models, and Generative Technologies
DOI https://doi.org/10.1051/itmconf/20257804015
Published online 08 September 2025
  1. T. Baltrušaitis, C. Ahuja and L.-P. Morency, “Multimodal machine learning: A survey and taxonomy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 2, pp. 423–443, 2018. [Google Scholar]
  2. B. Liu, Sentiment Analysis and Opinion Mining. Cham, Switzerland: Springer Nature, 2022. [Google Scholar]
  3. H. Geng, et al., “The joint optimal filtering and fault detection for multi-rate sensor fusion under unknown inputs,” Inf. Fusion, vol. 29, pp. 57–67, 2016. [Google Scholar]
  4. A. Zadeh, et al., “Tensor fusion network for multimodal sentiment analysis,” arXiv preprint arXiv:1707.07250, 2017. [Google Scholar]
  5. T. Baltrusaitis, C. Ahuja and L.-P. Morency, “Multimodal Machine Learning: A Survey and Taxonomy,” CoRR, vol. abs/1705.09406, 2017. [Google Scholar]
  6. A. Gandhi, K. Adhvaryu and S. Poria, “Multimodal sentiment analysis: A systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions,” Inf. Fusion, vol. 91, pp. 424–444, 2023. [Google Scholar]
  7. T. Niu, S. A. Zhu, L. Pang and A. El Saddik, “Sentiment analysis on multi-view social data,” in Proc. Multimedia Modeling Conf., 2016, pp. 15–27. [Google Scholar]
  8. W. Li and C. Gan, “Hierarchical interactive fusion based on attention mechanism for multimodal sentiment analysis,” J. Chongqing Univ. Posts Telecommun. (Nat. Sci. Ed.), vol. 35, no. 1, pp. 176–184, 2023. doi: 10.3979/j.issn.1673-825X.202106300229. [Google Scholar]
  9. A. Zadeh, M. Chen, S. Poria, et al., “Tensor fusion network for multimodal sentiment analysis,” in Proc. Conf. Empirical Methods in Natural Language Processing (EMNLP), 2017. [Google Scholar]
  10. T. Zhang, Q. Guo, Z. Li and L. Deng, “MC-CA: Multimodal sentiment analysis based on modal temporal coupling and interactive multi-head attention,” J. Chongqing Univ. Posts Telecommun. (Nat. Sci. Ed.), vol. 35, no. 4, pp. 680–687, 2023. doi: 10.3979/j.issn.1673-825X.202205090107. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.