Open Access
Issue
ITM Web Conf.
Volume 78, 2025
International Conference on Computer Science and Electronic Information Technology (CSEIT 2025)
Article Number 04029
Number of page(s) 8
Section Foundations and Frontiers in Multimodal AI, Large Models, and Generative Technologies
DOI https://doi.org/10.1051/itmconf/20257804029
Published online 08 September 2025
  1. Jiang, S., Yao, K., Chen, L., et al. : “Mask face recognition method based on CNN and Transformer hybrid model,” Sensors and Microsystems, 42, (1), pp. 144–148, 2023. doi: 10.13873/J.1000-9787(2023)01-0144-05 [Google Scholar]
  2. Hu, K. : “FaceFormer: Research on mask face recognition based on Transformer,” Information and Computer (Theoretical Edition), 36, (18), pp. 1–5, 2024 [Google Scholar]
  3. Li, M., Dang, Q.: “Lightweight face recognition algorithm integrating Transformer and CNN,” Computer Engineering and Applications, 60, (14), pp. 96–104, 2024 [Google Scholar]
  4. Li, D. : Research on low-score and high-noise face recognition based on Transformer, Chongqing University of Technology, doi: 10.27753/d.cnki.gcqgx.2024.001144, 2024 [Google Scholar]
  5. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: “ImageNet: A large-scale hierarchical image database,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami, FL, USA, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848 [Google Scholar]
  6. Schroff, F., Kalenichenko, D., Philbin, J.: “FaceNet: A unified embedding for face recognition and clustering,” CoRR, abs/1503.03832, 2015 [Google Scholar]
  7. Dan, J., Liu, Y., Xie, H., Deng, J., Xie, H., Xie, X., Sun, B.: “TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023 [Google Scholar]
  8. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,” International Conference on Learning Representations (ICLR), 2021 [Google Scholar]
  9. Vaswani, A., Shazeer, N., Parmar, N., et al.: “Attention is all you need,” Advances in Neural Information Processing Systems, 30, 2017 [Google Scholar]
  10. Chen, X., Wang, G., Zhu, Y., Tang, M.: “FaceFormer: Local-to-Global Feature Learning for Face,” 2022 [Google Scholar]
  11. Turk, M., Pentland, A. : “Eigenfaces for Recognition,” Journal of Cognitive Neuroscience, 3, (1), pp. 71–86, 1991 [CrossRef] [Google Scholar]
  12. Liu, Z., Lin, Y., Cao, Y., et al. : “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,” IEEE/CVF International Conference on Computer Vision (ICCV), pp. 10012–10022, 2021 [Google Scholar]
  13. Ennajar, S., Bouarifi, W.: “Monitoring student attendance through Vision Transformer-based iris recognition,” International Journal of Advanced Computer Science and Applications, 15, (2), pp. 72, 2024 [Google Scholar]
  14. Xu, X., Picek, S.: “Boosting adversarial robustness by adversarial pre-training,” Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, Copenhagen, Denmark, pp. 3540–3542, 2023 [Google Scholar]
  15. Xu, S., Li, X., Zhang, J., Wang, Y.: “TransFace: Calibrating Transformer Training for Face Recognition from a Data-Centric Perspective,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12345–12355, 2023 [Google Scholar]
  16. Li, Y., Wang, Z., Zhang, H.: “Harnessing edge information for improved robustness in Vision Transformers,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, (3), pp. 1234–1245, 2024 [Google Scholar]
  17. Yang, C., Hou, Z., Li, X., et al. : “Object detection algorithm based on CNN-Transformer bimodal feature fusion,” Chinese Journal of Computers, 46, (10), pp. 123–134, 2023 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.