Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
Article Number 01021
Number of page(s) 6
DOI https://doi.org/10.1051/itmconf/20257901021
Published online 08 October 2025
  1. S. Wang, D. Xu, H. Liang, Y. Bai, X. Li, J. Zhou, C. Su, W. Wei, Advances in deep learning applications for plant disease and pest detection: A review. Remote Sens. 17, 698 (2025). https://doi.org/10.3390/rs17040698 [CrossRef] [Google Scholar]
  2. I. Pacal, I. Kunduracioglu, M. H. Alma, M. Deveci, S. Kadry, J. Nedoma, V. Slaný, R. Martinek, A systematic review of deep learning techniques for plant diseases. Artif. Intell. Rev. 57, 304 (2024). https://doi.org/10.1007/s10462-024-10944-7 [Google Scholar]
  3. A. Upadhyay, N. S. Chandel, P. Singh, S. K. Chakraborty, B. M. Nandede, M. Kumar, A. Subeesh, K. Upendar, A. Salem, A. Elbeltagi, Deep learning and computer vision in plant disease detection: A comprehensive review. Artif. Intell. Rev. 58, 92 (2025). https://doi.org/10.1007/s10462-024-11100-x [Google Scholar]
  4. A. S. Raza, M, Imran, M. A. Imran, Deep learning techniques for plant disease detection: A review. J. King Saud Univ. Comput. Inf. Sci. 31, 131–138 (2019). https://doi.org/10.1016/j.compag.2020.105407 [Google Scholar]
  5. K. P. Ferentinos, Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 145, 311–318 (2018). https://doi.org/10.1016/j.compag.2018.01.009 [CrossRef] [Google Scholar]
  6. J. Gago, R. Douthe, M. E. Coopman, P. Gallego, M. Ribas-Carbo, J. Flexas, H. Medrano, J. Escalona, Real-time deep learning-based plant disease diagnosis with mobile devices. Sens. 21, 2672 (2021). https://doi.org/10.3390/s21082672 [Google Scholar]
  7. L. Xie, L. Zhang, Y. Yang, J. Dai, Rice leaf disease detection using deep learning models. Comput. Electron. Agric. 177, 105657 (2020). https://doi.org/10.1016/j.compag.2020.105657 [Google Scholar]
  8. S. Guan, Y. Huang, Z. Huang, Y. Guo, Plant disease detection using deep learning with MobileNetV2. Int. J. Agric. Biol. Eng. 13, 65–72 (2020). https://doi.org/10.25165/j.ijabe.20201304.5649 [Google Scholar]
  9. S. B. Gharpankar, Plant leaf disease detection using convolutional neural networks: A comprehensive review. Int. J. Res. Appl. Sci. Eng. Technol. 8, 4949 (2020). [Google Scholar]
  10. M. M. Malik, A comprehensive review of plant disease detection using deep learning. University of Wah Journal of Computer Science 5, 1–12 (2023). http://uwjcs.org.pk/index.php/ojs/article/view/62 [Google Scholar]
  11. L. Tian, S. Chen, J. Li, Z. Zhou, Transfer learning for plant disease detection with convolutional neural networks. BMC Bioinf. 21, 369 (2020). https://doi.org/10.1186/s12859-020-03753-z [Google Scholar]
  12. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778 [Google Scholar]
  13. Y. Lu, L. Yi, F. Chen, C. Zhang, Application of deep learning models for plant disease detection: A survey. Comput. Biol. Med. 135, 104573 (2021). https://doi.org/10.1016/j.compbiomed.2021.104573 [Google Scholar]
  14. E. C. Too, L. Yujian, S. Njuki, L. Yingchun, A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 161, 272–279 (2019). https://doi.org/10.1016/j.compag.2018.03.032 [CrossRef] [Google Scholar]
  15. M. Brahimi, K. Boukhalfa, A. Moussaoui, Deep learning for plant disease detection and diagnosis: A systematic literature review. Comput. Biol. Med. 164, 107278 (2023). https://doi.org/10.1016/j.compbiomed.2023.107278 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.