Open Access
| Issue |
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
|
|
|---|---|---|
| Article Number | 01024 | |
| Number of page(s) | 7 | |
| DOI | https://doi.org/10.1051/itmconf/20257901024 | |
| Published online | 08 October 2025 | |
- G. Kornaros, Hardware-assisted machine learning in resource-constrained IoT environments for security: Review and future prospective. IEEE Access 10, 58603–58622 (2022). https://doi.org/10.1109/ACCESS.2022.3179047 [CrossRef] [Google Scholar]
- P. Sharma, M. Kumar, H.K. Sharma, Robust GAN- based CNN model as generative AI application for deepfake detection. EAI Endorsed Trans. Internet Things 10, (2024). https://doi.org/10.4108/eetiot.5637 [Google Scholar]
- M. Mesgaran, A.B. Hamza, A graph encoder– decoder network for unsupervised anomaly detection. Neural Comput & Applic. 35, 2352123535 (2023). https://doi.org/10.1007/s00521-023-08964-5 [Google Scholar]
- A.U. Ezeagwu, P.C. Onyia, O.S. Alagba, J.A. Nnamani, E.E. Uzywekwu, A comparative study of OSI and TCP/IP models in network communication, J. Softw. Eng. Simul. 7, 08–14 (2021). https://doi.org/10.35629/9795-07060814 [Google Scholar]
- S. Li, Y.C. Tan, T. Vincent, High-pass graph convolutional network for enhanced anomaly detection: A novel approach. arXiv preprint arXiv:2411.01817, (2023) [Google Scholar]
- M.A. ElMossallamy, H. Zhang, L. Song, K.G. Seddik, Z. Han, G.Y. Li, Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities. IEEE Trans. Cogn. Commun. Netw. 6, 990–1002 (2020). https://doi.org/10.1109/TCCN.2020.2992604 [Google Scholar]
- Y. Pei, T. Huang, W. van Ipenburg, M. Pechenizkiy, RESGCN: Attention-based deep residual modeling for anomaly detection on attributed networks. Mach Learn. 111, 519–541 (2022). https://doi.org/10.1007/s10994-021-06044-0 [Google Scholar]
- M. Aboubakar, M. Kellil, P. Roux, A review of IoT network management: Current status and perspectives. J. King Saud Univ. Comput. Inf. Sci. 34, 4163–4176 (2022). https://doi.org/10.1016/j.jksuci.2021.03.006 [Google Scholar]
- P. Sharma, M. Kumar, H.K. Sharma, A generalized novel image forgery detection method using generative adversarial network. Multimed. Tools Appl. 83, 53549–53580 (2024). https://doi.org/10.1007/s11042-023-17588-9 [Google Scholar]
- P. Sharma, S. Bagui, A. Kumar, S. Tripathi, Implementation of attention mechanism in GAN for the purpose of quality detection, In Proceedings of the IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), IEEE, Greater Noida, India, April 08 (2024), 1081–1087 [Google Scholar]
- I. Ahmad, S. Shahabuddin, H. Malik, E. Harjula, T. Leppänen, L. Lovén, A. Anttonen, A.H. Sodhro, M.M. Alam, M. Juntti, A. Ylä-Jääski, T. Sauter, A. Gurtov, M. Ylianttila, J. Riekki, Machine learning meets communication networks: Current trends and future challenges. IEEE Access 8, 223418–223460 (2020). https://doi.org/10.1109/ACCESS.2020.3041765 [Google Scholar]
- M.A. Al-Shareeda, A.A. Alsadhan, H.H. Qasim, S. Manickam, The fog computing for internet of things: Review, characteristics and challenges, and open issues. Bull. Electr. Eng. Inform. 13, 10801089 (2024). https://doi.org/10.11591/eei.v13i2.5555 [Google Scholar]
- F. Alwahedi, A. Aldhaheri, M.A. Ferrag, A. Battah, N. Tihanyi, Machine learning techniques for IoT security: Current research and future vision with generative AI and large language models. Internet Things Cyber-Phys. Syst. 4, 167–185 (2024). https://doi.org/10.1016/j.iotcps.2023.12.003 [Google Scholar]
- S. Elkateb, A. Métwalli, A. Shendy, A.E.B. Abu- Elanien, Machine learning and IoT-based predictive maintenance approach for industrial applications. Alexandria Eng. J. 88, 298–309 (2024). https://doi.org/10.1016/j.aej.2023.12.065 [Google Scholar]
- J. Bhayo, S.A. Shah, S. Hameed, A. Ahmed, J. Nasir, D. Draheim, Towards a machine learningbased framework for DDoS attack detection in software-defined IoT (SD-IoT) networks. Eng. Appl. Artif. Intell. 123, 106432 (2023). https://doi.org/10.1016/j.engappai.2023.106432 [Google Scholar]
- A. Nazir, J. He, N. Zhu, A. Wajahat, X. Ma, F. Ullah, S. Qureshi, M.S. Pathan, Advancing IoT security: A systematic review of machine learning approaches for the detection of IoT botnets. J. King Saud Univ. – Comput. Inf. Sci. 35, 101820 (2023). https://doi.org/10.1016/j.jksuci.2023.101820 [Google Scholar]
- S.S. Samaan, A.E. Korial, R.R. Sarra, A.J. Humaidi, Multilingual web traffic forecasting for network management using artificial intelligence techniques. Results Eng. 26, 105262 (2025). https://doi.org/10.1016/j.rineng.2025.105262 [Google Scholar]
- J. Cámara, H. Muccini, K. Vaidhyanathan, Quantitative verification-aided machine learning: A tandem approach for architecting self-adaptive IoT systems. 2020 IEEE International Conference onSoftware Architecture (ICSA), IEEE, Salvador, Brazil, May 27 (2020), 11–22 [Google Scholar]
- S. Cherfi, A. Lemouari, A. Boulaiche, MLP-based intrusion detection for securing IoT networks. J. Ambient Intell. Hum. Comput. 33, 20 (2025). https://doi.org/10.1007/s10922-024-09889-7 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

