Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
Article Number 01027
Number of page(s) 7
DOI https://doi.org/10.1051/itmconf/20257901027
Published online 08 October 2025
  1. R. Mynavathi, P. Rajendran, T. Nandhu, S. Rajagopalan, B. Roshini, K. P. Sashmitha, Soil fertility assessment and crop recommendation using machine learning, In Proceedings of the International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI 2025), IEEE, Chennai, India, May 29 (2025), 1–6 [Google Scholar]
  2. M. Bharath, S. Gowtham, T. Rao, A. Kodipalli, Crops Analysis And Classification Using Machine Learning Techniques Based on Soil and Environmental Characteristics, In Proceedings of the 4th International Conference Communication, Computing and Industry 6.0 (C2I6 2023), IEEE, Bangalore, India, February 19 (2023), 1–7 [Google Scholar]
  3. S. Pitta, G. Amirthayogam, A.S. Rebecca, K. Manam, R. Sundar, G. Arunkumar, AgriNexus: A next-gen IoT-driven autonomous ecosystem for smart agriculture, In Proceedings of the 3rd International Conference Augmented Intelligence and Sustainable Systems (ICAISS 2025), IEEE, Trichy, India, June 24 (2025), 5 [Google Scholar]
  4. S. Kadiyala, C.S. Potluri, A.H. Birke, A. Mehra, S. Rajput, K. Padmavathi, An intelligent and costeffective IoT-based irrigation system using machine learning, In Proceedings of the 2nd International Conference Disruptive Technologies (ICDT 2024), IEEE, Greater Noida, India, April 11 (2024), 380–385 [Google Scholar]
  5. S.R. Sani, S.V.S. Ummadi, S. Thota, N. Muthineni, V.S.S. Swargam, T.S. Ravella, Crop recommendation system using random forest algorithm in machine learning, Proceedings of the 2nd International Conference Applied Artificial Intelligence and Computing (ICAAIC 2023), IEEE, Salem, India, June 08 (2023), 501–505 [Google Scholar]
  6. N. Aijaz, Artificial intelligence in agriculture: Advancing crop productivity and sustainability. J. Agric. Food Res. 20, 101762 (2025). https://doi.org/10.1016/j.jafr.2025.101762 [Google Scholar]
  7. E. Elbasi, Optimizing agricultural data analysis techniques through AI-powered decision-making processes. Appl. Sci. 14, 8018 (2024). https://doi.org/10.3390/app14178018 [Google Scholar]
  8. R. Basa, AI in agriculture: Revolutionizing precision farming and sustainable crop management. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 10, 535–543 (2024) [Google Scholar]
  9. N.S. Rampalli, Y.G. Sri, K.S. Bhuvaneshwari, Autonomous agriculture and food production: Agritech revolution, In The Convergence of SelfSustaining Systems with AI and IoT, IGI Global, Hershey, PA, USA, (2024), 40–63 [Google Scholar]
  10. T. Wilson, J. Turner, Artificial intelligence in sustainable agriculture: Machine learning for crop recommendations. Sustain. Agric. Technol. Rev. (2023) [Google Scholar]
  11. M. Johnson, P. Harrison, Sustainable farming practices through agricultural waste utilization: A systematic review. J. Environ. Manage. (2021) [Google Scholar]
  12. P.R. Kumar, Soil quality prediction in context learning approaches using deep learning and blockchain for smart agriculture, In Effective AI, Blockchain, and E-Governance Applications for Knowledge Discovery and Management, IGI Global, Hershey, PA, USA, September 25 (2023), 1–26 [Google Scholar]
  13. G. Gupta, S.K. Pal, Applications of AI in precision agriculture. SN Bus. Econ. 3, 61 (2025). https://doi.org/10.1007/s44279-025-00220-9 [Google Scholar]
  14. M. Pyingkodi, K. Thenmozhi, M. Karthikeyan, T. Kalpana, S. Palarimath, G.B.A. Kumar, IoT-based soil nutrients analysis and monitoring system for smart agriculture, In Proceedings of the 3rd International Conference Electronics and Sustainable Communication Systems (ICESC 2022), IEEE, Coimbatore, India, September 19 (2022), 489–494 [Google Scholar]
  15. A. Barve, R. Pallavi, S. Shashikant Deepak, S. Shalini, A novel ontological-based trust aware hybrid key management scheme (OTAHKMS) to enhance network lifetime and energy usage in wireless sensor networks (WSNs). Int. J. Inf. Technol. 16, 1429–1435 (2024). https://doi.org/10.1007/s41870-023-01696-8 [Google Scholar]
  16. M.A. Pathiraja, W.A.S. Wijesinghe, A.P. Kumara, Smart agro soil analyzer for sustainable farming, In Proceedings of the International Conference Image Processing and Robotics (ICIPRoB 2024), IEEE, Colombo, Sri Lanka, June 05 (2024), 1–3 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.