Error
  • The authentification system partialy failed, sorry for the inconvenience. Please try again later.
Open Access
Issue
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
Article Number 01032
Number of page(s) 7
DOI https://doi.org/10.1051/itmconf/20257901032
Published online 08 October 2025
  1. G. Ramkumar, J. Seetha, R. Priyadarshini, M. Gopila, G. Saranya, IoT-based patient monitoring system for predicting heart disease using deep learning. Meas. 218, 113235 (2023). https://doi.org/10.1016/j.measurement.2023.113235 [Google Scholar]
  2. N. Alharbe, M. Almalki, IoT-enabled healthcare transformation leveraging deep learning for advanced patient monitoring and diagnosis. Multimed. Tools Appl. 84, 21331–21344 (2025). https://doi.org/10.1007/s11042-024-19919-w [Google Scholar]
  3. A. Motwani, P.K. Shukla, M. Pawar, Novel framework based on deep learning and cloud analytics for smart patient monitoring and recommendation (SPMR). J. Ambient Intell. Humaniz. Comput. 14, 5565–5580 (2023). https://doi.org/10.1007/s12652-020-02790-6 [Google Scholar]
  4. H. Ni, S. Meng, X. Geng, P. Li, Z. Li, X. Chen, X. Wang, S. Zhang, Time series modeling for heart rate prediction: From arima to transformers, In 2024 6th International Conference on Electronic Engineering and Informatics (EEI), IEEE, Chongqing, China, October 08 (2024), 584–589 [Google Scholar]
  5. S. Aghalya, N.V. Rao, R.R. Roy, C. Srinivasan, G. Premi, Real-time Monitoring and Prediction of Respiratory Diseases Using IoT and Machine Learning. in 2023 Second International Conference on Smart Technologies for Smart Nation (SmartTechCon), IEEE, Singapore, Singapore, January 19 (2024), 635–640 [Google Scholar]
  6. S.P. Vimal, M. Vadivel, V.V. Baskar, V.G. Sivakumar, C. Srinivasan, Integrating IoT and machine learning for real-time patient health monitoring with sensor networks, In 2023 4th International Conference on Smart Electronics and Communication (ICOSEC), IEEE, Trichy, India, October 16 (2023), 574–578 [Google Scholar]
  7. J.A.J. Singh, J. Gnanasoundharam, M. Birunda, G. Sudha, S.P. Maniraj, C. Srinivasan, Wearable Sepsis Early Warning Using Cloud Computing and Logistic Regression Predictive Analytics, In 2024 11th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), IEEE, Noida, India, May 14 (2024), 1–6 [Google Scholar]
  8. A. Cuevas-Chávez, Y. Hernandez, J. Ortiz-Hernandez, E. Sanchez-Jimenez, G. Ochoa-Ruiz, J. Perez, G. Gonzalez-Serna, A systematic review of machine learning and IoT applied to the prediction and monitoring of cardiovascular diseases. Healthcare 11, 2240 (2023). https://doi.org/10.3390/healthcare11162240 [Google Scholar]
  9. A. Ahmad, H.K. Hussain, H. Tanveer, T. Kiruthiga, K. Gupta, The intelligent heart rate monitoring model for survivability prediction of cardiac arrest patients using deep cardiac learning model, In 2023 International Conference on Intelligent Systems for Communication, IoT and Security (ICISCoIS), IEEE, Coimbatore, India, April 19 (2023), 376–381 [Google Scholar]
  10. K.K. Baseer, K. Sivakumar, D. Veeraiah, G. Chhabra, P.K. Lakineni, M.J. Pasha, R. Gandikota, G. Harikrishnan, Healthcare diagnostics with an adaptive deep learning model integrated with the Internet of medical Things (IoMT) for predicting heart disease. Biomed. Signal Process. Control 92, 105988 (2024). https://doi.org/10.1016/j.bspc.2023.105988 [Google Scholar]
  11. S. Mohapatra, P.K. Sahoo, S.K. Mohapatra, Healthcare big data analysis with artificial neural network for cardiac disease prediction. Electron. 13, 163 (2023). https://doi.org/10.3390/electronics13010163 [Google Scholar]
  12. D. Singh, V. Kumar, R.G. Qiu, Patients’ disease risk predictive modeling using MIMIC data. Procedia Comput. Sci. 168, 112–117 (2020). https://doi.org/10.1016/j.procs.2020.02.256 [Google Scholar]
  13. M.U. Alam, R. Rahmani, Fedsepsis: A federated multi-modal deep learning-based internet of medical things application for early detection of sepsis from electronic health records using raspberry pi and jetson nano devices. Sensors 23, 970 (2023). https://doi.org/10.3390/s23020970 [Google Scholar]
  14. S. Zheng, Z. Zhu, Z. Liu, Z. Guo, Y. Liu, Y. Yang, Y. Zhao, Multi-modal graph learning for disease prediction. IEEE Trans. Med. Imaging 41, 22072216 (2022). https://doi.org/10.1109/TMI.2022.3168783 [Google Scholar]
  15. V.S. Siu, K.Y. Hsieh, I. Buleje, T. Itoh, T. Hao, B. Civjan, N. Hinds, B. Dang, J.L. Rogers, B. Wen, Health Guardian: Using Multi-modal Data to Understand Individual Health, In 2023 IEEE International Conference on Digital Health (ICDH), IEEE, Chicago, IL, USA, August 28 (2023), 65–74 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.