Open Access
| Issue |
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
|
|
|---|---|---|
| Article Number | 01041 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/itmconf/20257901041 | |
| Published online | 08 October 2025 | |
- B.B. Nair, P. Vallimeena, U. Gopalakrishnan, S.N. Rao, S. Krishnamoorthy, Enhanced urban flood monitoring: Integrating advanced semantic segmentation and human facial feature and posture analysis. IEEE Access. 12, 185807–185825 (2024). https://doi.org/10.1109/ACCESS.2024.3513239 [Google Scholar]
- M. Kögel, L. Feile, F. Möldner, D. Carstensen, SSegRef2Surf—Near real-time photogrammetric flood monitoring and refinement of classified water surfaces. Remote Sens. 17, 1351 (2025). https://doi.org/10.3390/rs17081351 [Google Scholar]
- Y. Wang, Y. Shen, B. Salahshour, M. Cetin, K. Iftekharuddin, N. Tahvildari, G. Huang, D.K. Harris, K. Ampofo, J.L. Goodall, Urban flood extent segmentation and evaluation from real-world surveillance camera images using deep convolutional neural network. Environ. Model. Softw. 173, 105939 (2024). https://doi.org/10.1016/j.envsoft.2023.105939 [Google Scholar]
- P. Dang, J. Zhu, C. Dang, H. Zhang, A method for assessing urban flood impacts by combining hydrodynamic models with entity semantic evolution. Int. J. Digit. Earth 18, 2515268 (2025). https://doi.org/10.1080/17538947.2025.2515268 [Google Scholar]
- B.J. Jang, I. Jung, Development of high-precision urban flood-monitoring technology for sustainable smart cities. Sensors 23, 9167 (2023). https://doi.org/10.3390/s23229167 [Google Scholar]
- L. Hashemi-Beni, M. Puthenparampil, A. Jamali, A low-cost IoT-based deep learning method of water gauge measurement for flood monitoring. Geomatics Nat. Hazards Risk 15, 2364777 (2024). https://doi.org/10.1080/19475705.2024.2364777 [Google Scholar]
- G. Savitha, S. Girisha, P. Sughosh, D.K. Shetty, J.M. Balakrishnan, R. Paul, N. Naik, Consistency regularization for semi-supervised semantic segmentation of flood regions from SAR images. IEEE Access. 13, 9642–9653 (2025). https://doi.org/10.1109/ACCESS.2025.3526244 [Google Scholar]
- N. Humaira, V.S. Samadi, N.C. Hubig, DX- FloodLine: End-to-end deep explainable pipeline for real-time flood scene object detection from multimedia images. IEEE Access 11, 110644110655 (2023). https://doi.org/10.1109/ACCESS.2023.3321312 [Google Scholar]
- C. Krullikowski, C. Chow, M. Wieland, S. Martinis, B. Bauer-Marschallinger, F. Roth, P. Matgen, M. Chini, R. Hostache, Y. Li, P. Salamon, Estimating ensemble likelihoods for the Sentinel-1 based Global Flood Monitoring product of the Copernicus Emergency Management Service. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 16, 6917–6930 (2023). https://doi.org/10.1109/JSTARS.2023.3292350 [Google Scholar]
- F. Fichtner, N. Mandery, M. Wieland, S. Groth, S. Martinis, T. Riedlinger, Time-series analysis of Sentinel-1/2 data for flood detection using a discrete global grid system and seasonal decomposition. Int. J. Appl. Earth Obs. Geoinf. 119, 103329 (2023). https://doi.org/10.1016/j.jag.2023.103329 [Google Scholar]
- F. Pech-May, R. Aquino-Santos, O. Álvarez-Cárdenas, J.L. Arandia, G. Rios-Toledo, Segmentation and visualization of flooded areas through Sentinel-1 images and U-net. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 17, 8996–9008 (2024). https://doi.org/10.1109/JSTARS.2024.3387452 [Google Scholar]
- M. Bereczky, M. Wieland, C. Krullikowski, S. Martinis, S. Plank, Sentinel-1-based water and flood mapping: Benchmarking convolutional neural networks against an operational rule-based processing chain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 15, 2023–2036 (2022). https://doi.org/10.1109/JSTARS.2022.3152127 [Google Scholar]
- A.M. Noori, A.R.T. Ziboon, A.N. Al-Hameedawi, Deep-learning integration of CNN–Transformer and U-net for bi-temporal SAR flash-flood detection. Appl. Sci. 15, 7770 (2025). https://doi.org/10.3390/app15147770 [Google Scholar]
- A. Sonavale, M. Chakkaravarthy, S. Srinivasa Rao, H.B.M. Salleh, J. Jadhav, Automatic semantic segmentation and classification of remote sensing image data for flood detection using novel LSTM neural network. SN Comput. Sci. 5, 992 (2024). https://doi.org/10.1007/s42979-024-03336-9 [Google Scholar]
- X. Yan, Y. Zhu, Z. Wang, B. Xu, L. He, R. Xia, Intelligent flood scene understanding using computer vision-based multi-object tracking. Water 17, 2111 (2025). https://doi.org/10.3390/w17142111 [Google Scholar]
- Dataset 1:SEN1FLOODS11-essentials [Google Scholar]
- Dataset 2: S1GFloods_ALL [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

