Open Access
| Issue |
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
|
|
|---|---|---|
| Article Number | 01043 | |
| Number of page(s) | 8 | |
| DOI | https://doi.org/10.1051/itmconf/20257901043 | |
| Published online | 08 October 2025 | |
- R.A. Jaswal, S. Dhingra, Empirical analysis of multiple modalities for emotion recognition using convolutional neural network. Meas. Sens. 26, 100716 (2023). https://doi.org/10.1016/j.measen.2023.100716 [Google Scholar]
- H.M. Shahzad, S.M. Bhatti, A. Jaffar, S. Akram, M. Alhajlah, A. Mahmood, Hybrid facial emotion recognition using CNN-based features. Appl. Sci. 13, 5572 (2023). https://doi.org/10.3390/app13095572 [Google Scholar]
- M. Hussain, H.A. AboAlSamh, I. Ullah, Emotion recognition system based on two-level ensemble of deep-convolutional neural network models. IEEE Access 11, 16875–16895 (2023). https://doi.org/10.1109/ACCESS.2023.3245830 [Google Scholar]
- M.C. Gursesli, S. Lombardi, M. Duradoni, L. Bocchi, A. Guazzini, A. Lanata, Facial emotion recognition (FER) through custom lightweight CNN model: performance evaluation in public datasets. IEEE Access 12, 45543–45559 (2024). https://doi.org/10.1109/ACCESS.2024.3380847 [Google Scholar]
- Y. Huang, D. Bo, Emotion classification and achievement of students in distance learning based on the knowledge state model. Sustainability 15, 2367 (2023). https://doi.org/10.3390/su15032367 [Google Scholar]
- Z. Huang, Y. Ma, R. Wang, W. Li, Y. Dai, A model for EEG-based emotion recognition: CNN-BI- LSTM with attention mechanism. Electronics 12, 3188 (2023). https://doi.org/10.3390/electronics12143188 [Google Scholar]
- H.D. Le, G.S. Lee, S.H. Kim, S. Kim, H.J. Yang, Multi-label multimodal emotion recognition with transformer-based fusion and emotion-level representation learning. IEEE Access 11, 1474214751 (2023). https://doi.org/10.1109/ACCESS.2023.3244390 [Google Scholar]
- E.E. Arslan, M.F. Akşahin, M. Yilmaz, H.E. Ilgın, Towards emotionally intelligent virtual environments: classifying emotions through a biosignal-based approach. Appl. Sci. 14, 8769 (2024). https://doi.org/10.3390/app14198769 [Google Scholar]
- D. Ngo, A. Nguyen, B. Dang, H. Ngo, Facial expression recognition for examining emotional regulation in synchronous online collaborative learning. Int. J. Artif. Intell. Educ. 34, 650–669 (2024). https://doi.org/10.1007/s40593-023-00378-7 [Google Scholar]
- J. Qi, H. Tang, Z. Zhu, Exploring an affective and responsive virtual environment to improve remote learning. Virtual Worlds 2, 53–74 (2023). https://doi.org/10.3390/virtualworlds2010004 [Google Scholar]
- S.G. Rajesh, S.V. Madangarli, G.S. Pisharady, R. Subrahmanyam, Enhancement of virtual assistants through multimodal AI for emotion recognition. IEEE Access. 13, 102159–102179 (2025). https://doi.org/10.1109/ACCESS.2025.3577664 [Google Scholar]
- M. Shomoye, R. Zhao, Automated emotion recognition of students in virtual reality classrooms. Comput. Educ.: X Reality 5, 100082 (2024). https://doi.org/10.1016/j.cexr.2024.100082 [Google Scholar]
- M. Aly, Revolutionizing online education: Advanced facial expression recognition for realtime student progress tracking via deep learning model. Multimed. Tools Appl. 84, 12575–12614 (2025). https://doi.org/10.1007/s11042-024-19392-5 [Google Scholar]
- M. Aly, A. Ghallab, I.S. Fathi, Enhancing facial expression recognition system in online learning context using efficient deep learning model. IEEE Access 11, 121419–121433 (2023). https://doi.org/10.1109/ACCESS.2023.3325407 [Google Scholar]
- C. Gautam, K.R. Seeja, Facial emotion recognition using handcrafted features and CNN. Procedia Comput. Sci. 218, 1295–1303 (2023). https://doi.org/10.1016/j.procs.2023.01.108 [Google Scholar]
- KDEF dataset link: KDEF Database [Google Scholar]
- RAF-DB dataset link: RAF-DB DATASET [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

