Open Access
| Issue |
ITM Web Conf.
Volume 79, 2025
International Conference on Knowledge Engineering and Information Systems (KEIS-2025)
|
|
|---|---|---|
| Article Number | 01050 | |
| Number of page(s) | 7 | |
| DOI | https://doi.org/10.1051/itmconf/20257901050 | |
| Published online | 08 October 2025 | |
- M. Qaraqe, Y.D. Yang, E. B. Varghese, E. Basaran, A. Elzein, Crowd behavior detection: Leveraging video swin transformer for crowd size and violence level analysis. Appl. Intell. 54, 10709–10730 (2024). https://doi.org/10.1007/s10489-024-05775-6 [Google Scholar]
- R. Alzahrani, N. Algethami, Leveraging machine learning for optimal pilgrim crowd management. Electronics 14, 2507 (2025). https://doi.org/10.3390/electronics14132507 [Google Scholar]
- P.S. Karthika, V. Kedar, A. Verma, A walk accessibility-based approach to assess crowd management in mass religious gatherings. J. Transp. Geogr. 104, 103443 (2022). https://doi.org/10.1016/j.jtrangeo.2022.103443 [Google Scholar]
- A. Siddiqa, W.Z. Khan, M.H. Alkinani, E.A. Aldhahri, M.K. Khan, Edge-assisted federated learning framework for smart crowd management. Internet Things 27, 101253 (2024). https://doi.org/10.1016/j.iot.2024.101253 [Google Scholar]
- J. Soza-Parra, I. Tiznado-Aitken, J.C. Munoz, A discrete-event public transportation simulation model to evaluate travel demand management impacts on waiting times and crowding conditions. J. Public Transp. 25, 100075 (2023). https://doi.org/10.1016/j.jpubtr.2023.100075 [Google Scholar]
- V.W. Wong, K.H. Law, Fusion of CCTV video and spatial information for automated crowd congestion monitoring in public urban spaces. Algorithms 16, 154 (2023). https://doi.org/10.3390/a16030154 [Google Scholar]
- A. Serek, B. Amirgaliyev, R.Y.M. Li, A. Zhumadillayeva, D. Yedilkhan, Crowd density estimation using enhanced multi-column convolutional neural network and adaptive collation. IEEE Access. 13, 146956–146972 (2025). https://doi.org/10.1109/ACCESS.2025.3597393 [Google Scholar]
- R. Rusca, D. Gasco, C. Casetti, P. Giaccone, Privacy-preserving WiFi fingerprint-based people counting for crowd management. Comput. Commun. 225, 339–349 (2024). https://doi.org/10.1016/j.comcom.2024.07.010 [Google Scholar]
- W. Halboob, H. Altaheri, A. Derhab, J. Almuhtadi, Crowd management intelligence framework: Umrah use case. IEEE Access 12, 6752–6767 (2024). https://doi.org/10.1109/ACCESS.2024.3350188 [Google Scholar]
- N.M. Bahbouh, S. Sendra, A.A.A. Sen, Designing a comprehensive framework for health management in crowded events. Int. J. Inf. Technol. 17, 1641–1651 (2025). https://doi.org/10.1007/s41870-024-02051-1 [Google Scholar]
- S.D. Khan, Y. Salih, B. Zafar, A. Noorwali, A deepfusion network for crowd counting in high-density crowded scenes. Int. J. Comput. Intell. Syst. 14, 168 (2021). https://doi.org/10.1007/s44196-021-00016-x [Google Scholar]
- S. Goel, D. Koundal, A MaskFormer EfficientNet instance segmentation approach for crowd counting. Sci. Rep. 15, 13275 (2025). https://doi.org/10.1038/s41598-025-95174-9 [Google Scholar]
- Z. Zhao, P. Ma, M. Jia, X. Wang, X. Hei, A dilated convolutional neural network for cross-layers of contextual information for congested crowd counting. Sensors 24, 1816 (2024). https://doi.org/10.3390/s24061816 [Google Scholar]
- Y. Chen, H. Zhao, M. Gao, M. Deng, A weakly supervised hybrid lightweight network for efficient crowd counting. Electronics 13, 723 (2024). https://doi.org/10.3390/electronics13040723 [Google Scholar]
- L. Fotia, G. Percannella, A. Saggese, M. Vento, Optimizing crowd counting in dense environments through curriculum learning training strategy. SN Comput. Sci. 5, 683 (2024). https://doi.org/10.1007/s42979-024-03029-3 [Google Scholar]
- UCF_CROWD_50 dataset Link: https://www.kaggle.com/datasets/tthien/ucfcc50 (Accessed on 03.09.2025) [Google Scholar]
- UCF-QNRF dataset Link: https://www.kaggle.com/datasets/faihajalamtopu/ucf-qnrf (Accessed on 03.09.2025) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.

