Issue |
ITM Web Conf.
Volume 8, 2016
International Conference on Big Data and its Applications (ICBDA 2016)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/itmconf/20160801003 | |
Published online | 22 November 2016 |
An Overview of Techniques for Cardiac Left Ventricle Segmentation on Short-Axis MRI
1 Krasovskii Institute of Mathematics and Mechanics, Yekaterinburg, Russia
2 Ural Federal University, Yekaterinburg, Russia
* Corresponding author: arseny.krasnobaev@gmail.com
Nowadays, heart diseases are the leading cause of death. Left ventricle segmentation of a human heart in magnetic resonance images (MRI) is a crucial step in both cardiac diseases diagnostics and heart internal structure reconstruction. It allows estimating such important parameters as ejection faction, left ventricle myocardium mass, stroke volume, etc. In addition, left ventricle segmentation helps to construct the personalized heart computational models in order to conduct the numerical simulations. At present, the fully automated cardiac segmentation methods still do not meet the accuracy requirements. We present an overview of left ventricle segmentation algorithms on short-axis MRI. A wide variety of completely different approaches are used for cardiac segmentation, including machine learning, graph-based methods, deformable models, and low-level heuristics. The current state-of-the-art technique is a combination of deformable models with advanced machine learning methods, such as deep learning or Markov random fields. We expect that approaches based on deep belief networks are the most promising ones because the main training process of networks with this architecture can be performed on the unlabelled data. In order to improve the quality of left ventricle segmentation algorithms, we need more datasets with labelled cardiac MRI data in open access.
© Owned by the authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.