Open Access
ITM Web Conf.
Volume 8, 2016
International Conference on Big Data and its Applications (ICBDA 2016)
Article Number 01003
Number of page(s) 7
Published online 22 November 2016
  1. D. Mozaffarian et al., Heart Disease and Stroke Statistics – 2016 Update. American Heart Association (2016) [Google Scholar]
  2. S.F. Pravdin, V.I. Berdyshev, A.V. Panfilov, L.B. Katsnelson, O.E. Solovyova, V.S. Markhasin. Mathematical model of the anatomy and fibre orientation field of the left ventricle of the heart. Biomedical engineering online. 12:54 (2013) [Google Scholar]
  3. I.B. Ayed, H. Chen, K. Punithakumar, I. Ross, Sh. Li, Max-flow segmentation of the left ventricle by recovering subject-specific distributions via a bound of the Bhattacharyya measure, Med. Image Anal., 16, (2012) [Google Scholar]
  4. P. Radau, Y. Lu, K. Connelly, G Paul, A.J. Dick, G.A. Wright. Evaluation Framework for Algorithms Segmenting Short Axis Cardiac MRI. The MIDAS Journal – Cardiac MR Left Ventricle Segmentation Challenge,, (2009) [Google Scholar]
  5. A. Andreopoulos, K. John, Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI, Med. Image Anal., 12 (3), pp. 335–357, (2008) [CrossRef] [Google Scholar]
  6. X. Lin, B. Cowan, A. Young, Automated Detection of Left Ventricle in 4D MR Images: Experience from a Large Study, LNCS, 4190, pp. 728–735, (2006). [Google Scholar]
  7. M.M.A. Hadhoud, M.I. Eladawy, A. Farag, F.M. Montevecchi, U. Morbiducci, Left Ventricle Segmentation in Cardiac MRI Images, American Journal of Biomedical Engineering, 2(3), pp. 131–135, (2012) [CrossRef] [Google Scholar]
  8. M. R. Avendi, A. Kheradvar, H. Jafarkhani, A Combined Deep-Learning and Deformable-Model Approach to Fully Automatic Segmentation of the Left Ventricle in Cardiac MRI, Med. Image Anal., 30, pp. 108–119, (2016). [CrossRef] [Google Scholar]
  9. T. A. Ngo, G. Carneiro, Left ventricle segmentation from cardiac MRI combining level set methods with deep belief networks, 2013 20th IEEE International Conference on Image Processing (ICIP), pp. 695–699, (2013) [Google Scholar]
  10. L. Cordero-Grande, G. Vegas-Sánchez-Ferrero, P. Casaseca-de-la-Higuera, J. A. San-Román-Calvar, A. Revilla-Orodea, M. Martín-Fernández, C. Alberola-López, Unsupervised 4D myocardium segmentation with a Markov Random Field based deformable model, Med. Image Anal. 15(3), pp. 283–301, (2011) [CrossRef] [Google Scholar]
  11. J. Margeta, E. Geremia, A. Criminisi, N. Ayache, Layered spatio-temporal forests for left ventricle segmentation from 4D cardiac MRI data, LNCS, 7085, pp. 109–119, (2011) [Google Scholar]
  12. W. Sun, M. Cetin, R. Chan, V. Reddy, G. Holmvang, V. Chandar, A. Willsky, Segmenting and Tracking the Left Ventricle by Learning the Dynamics in Cardiac Images, LNCS, 3565, pp. 553–565, (2005) [Google Scholar]
  13. T.N. Shewaye, Cardiac MR Image Segmentation Techniques: an overview, (2015) [Google Scholar]
  14. L. Yann, B. Yoshua. Convolutional Networks for Images, Speech, and Time Series, The Handbook of Brain Theory and Neural Networks, MIT Press, pp. 1344, (1998) [Google Scholar]
  15. M Lai, Deep Learning for Medical Image Segmentation, (2015) [Google Scholar]
  16. G. E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets, Neural computation, 18(7), pp. 1527–1554, (2006) [Google Scholar]
  17. P. V. Tran, A Fully Convolutional Neural Network for Cardiac Segmentation in Short-Axis MRI, (2016) [Google Scholar]
  18. T. McInerney, D. Terzopoulos, Deformable Models in Medical Image Analysis: A Survey, Med. Image Anal. 1(2), pp. 91–108 (1996) [CrossRef] [Google Scholar]
  19. H. Hu,Z. Gao,L. Liu,H. Liu,j. Gao, et al. Automatic Segmentation of the Left Ventricle in Cardiac MRI Using Local Binary Fitting Model and Dynamic Programming Techniques. PLoS ONE 9(12)(2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.