Issue |
ITM Web Conf.
Volume 12, 2017
The 4th Annual International Conference on Information Technology and Applications (ITA 2017)
|
|
---|---|---|
Article Number | 04005 | |
Number of page(s) | 4 | |
Section | Session 4: Information Theory and Information Systems | |
DOI | https://doi.org/10.1051/itmconf/20171204005 | |
Published online | 05 September 2017 |
The Design and Implementation of a Remote Fault Reasoning Diagnosis System for Meteorological Satellites Data Acquisition
1 National Satellite Meteorological Center, CMA, Beijing 100081
2 Nanjing University of Information Science & Technology, Nanjing 210044
Under the background of the trouble shooting requirements of FENGYUN-3 (FY-3) meteorological satellites data acquisition in domestic and oversea ground stations, a remote fault reasoning diagnosis system is developed by Java 1.6 in eclipse 3.6 platform. The general framework is analyzed, the workflow is introduced. Based on the system, it can realize the remote and centralized monitoring of equipment running status in ground stations,triggering automatic fault diagnosis and rule based fault reasoning by parsing the equipment quality logs, generating trouble tickets and importing expert experience database, providing text and graphics query methods. Through the practical verification, the system can assist knowledge engineers in remote precise and rapid fault location with friendly graphical user interface, boost the fault diagnosis efficiency, enhance the remote monitoring ability of integrity operating control system. The system has a certain practical significance to improve reliability of FY-3 meteorological satellites data acquisition.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.