Issue |
ITM Web Conf.
Volume 12, 2017
The 4th Annual International Conference on Information Technology and Applications (ITA 2017)
|
|
---|---|---|
Article Number | 05012 | |
Number of page(s) | 6 | |
Section | Session 5: Information Processing Methods and Techniques | |
DOI | https://doi.org/10.1051/itmconf/20171205012 | |
Published online | 05 September 2017 |
Ship Detection and Classification on Optical Remote Sensing Images Using Deep Learning
School of Computer and Control Engineering, University of Chinese Academy of Sciences, UCAS, Beijing, China ; Beijing University of Posts and Telecommunication, BUPT, Beijing, China ; Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, CAS, Beijing, China
yingliu@ucas.ac.cn
hongyuancui@163.com
kuangzheng2013212987@bupt.edu.cn
ligq@radi.ac.cn
Ship detection and classification is critical for national maritime security and national defense. Although some SAR (Synthetic Aperture Radar) image-based ship detection approaches have been proposed and used, they are not able to satisfy the requirement of real-world applications as the number of SAR sensors is limited, the resolution is low, and the revisit cycle is long. As massive optical remote sensing images of high resolution are available, ship detection and classification on theses images is becoming a promising technique, and has attracted great attention on applications including maritime security and traffic control. Some digital image processing methods have been proposed to detect ships in optical remote sensing images, but most of them face difficulty in terms of accuracy, performance and complexity. Recently, an autoencoder-based deep neural network with extreme learning machine was proposed, but it cannot meet the requirement of real-world applications as it only works with simple and small-scaled data sets. Therefore, in this paper, we propose a novel ship detection and classification approach which utilizes deep convolutional neural network (CNN) as the ship classifier. The performance of our proposed ship detection and classification approach was evaluated on a set of images downloaded from Google Earth at the resolution 0.5m. 99% detection accuracy and 95% classification accuracy were achieved. In model training, 75× speedup is achieved on 1 Nvidia Titanx GPU.
© The Authors, published by EDP Sciences, 2017
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.