Issue |
ITM Web Conf.
Volume 24, 2019
AMCSE 2018 - International Conference on Applied Mathematics, Computational Science and Systems Engineering
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 5 | |
Section | Communications-Systems-Signal Processing | |
DOI | https://doi.org/10.1051/itmconf/20192401012 | |
Published online | 01 February 2019 |
Continuous Speech Recognition of Kazakh Language
1
Institut of Information and Computational Technology, Almaty, Kazakhstan
2
Information Technology Department, al-Farabi Kazakh National University, Almaty, Kazakhstan
* Corresponding author: morkenj@mail.ru
This article describes the methods of creating a system of recognizing the continuous speech of Kazakh language. Studies on recognition of Kazakh speech in comparison with other languages began relatively recently, that is after obtaining independence of the country, and belongs to low resource languages. A large amount of data is required to create a reliable system and evaluate it accurately. A database has been created for the Kazakh language, consisting of a speech signal and corresponding transcriptions. The continuous speech has been composed of 200 speakers of different genders and ages, and the pronunciation vocabulary of the selected language. Traditional models and deep neural networks have been used to train the system. As a result, a word error rate (WER) of 30.01% has been obtained.
© The Authors, published by EDP Sciences, 2019
This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.