Issue |
ITM Web Conf.
Volume 32, 2020
International Conference on Automation, Computing and Communication 2020 (ICACC-2020)
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 5 | |
Section | Communication | |
DOI | https://doi.org/10.1051/itmconf/20203202008 | |
Published online | 29 July 2020 |
Epileptic Seizure Detection Using Artifact Reduction and HOS Features of WPD
Department of EXTC RAIT, Navi Mumbai, India
meenalkakade1@gmail.com, cjgaikwad@gmail.com, vijayr_dahake@rediffmail.com
The use of computer aided diagnosis systems for disease identifiscation, based on signal processing, image processing and video processing terminologies is common due to emerging technologies in medical field. The detection of epilepsy seizures using EEG recordings is done by different signal processing techniques. To reduce the disability caused by the uncertainty of the occurrence of seizures, a recording system which shall result accurate and early detection of seizure with quick warning is greatly desired. To optimize the performance of EEG based epilepsy seizures detection, in this work we are presenting a method based on two key algorithms. Here, we propose unique algorithm based on SWT (Stationary Wavelet Transform), for easier seizure analysis process, along with improved performance of the application of seizure detection algorithms. Then, we propose the algorithm for feature extraction that makes use of Higher Order Statistics of the coefficients that are calculated using Wavelet Packet Decomposition (WPD).This helps in improving the epilepsy seizures detection performance. The proposed methods helps to improve the overall efficiency and robustness of EEG based epilepsy seizures detection system.
Key words: Artifacts / EEG / Feature Extraction / Higher Order Statistics / Stationary Wavelet Transform / Seizure / Wavelet Packet Decomposition
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.