Issue |
ITM Web Conf.
Volume 32, 2020
International Conference on Automation, Computing and Communication 2020 (ICACC-2020)
|
|
---|---|---|
Article Number | 03032 | |
Number of page(s) | 7 | |
Section | Computing | |
DOI | https://doi.org/10.1051/itmconf/20203203032 | |
Published online | 29 July 2020 |
A Multilayer Hybrid Machine Learning Model for Diabetes Detection
Ramrao Adik Institute Of Technology Navi Mumbai India
* e-mail: parab.sahil.16ce1061@gmail.com
** e-mail: rathod.piyush.16ce2011@gmail.com
*** e-mail: patil.durgesh.16ce6101@gmail.com
**** e-mail: vishwanath.c@rait.ac.in
Diabetes Detection has been one of the many challenges which is being faced by the medical as well as technological communities. The principles of machine learning and its algorithms is used in order to detect the possibility of a diabetic patient based on their level of glucose concentration , insulin levels and other medically point of view required test reports. The basic diabetes detection model uses Bayesian classification machine learning algorithm, but even though the model is able to detect diabetes, the efficiency is not acceptable at all times because of the drawbacks of the single algorithm of the model. A Hybrid Machine Learning Model is used to overcome the drawbacks produced by a single algorithm model. A Hybrid Model is constructed by implementing multiple applicable machine learning algorithms such as the SVM model and Bayesian’s Classification model or any other models in order to overcome drawbacks faced by each other and also provide their mutually contributed efficiency. In a perfect case scenario the new hybrid machine learning model will be able to provide more efficiency as compared to the old Bayesian’s classification model.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.