Issue |
ITM Web Conf.
Volume 40, 2021
International Conference on Automation, Computing and Communication 2021 (ICACC-2021)
|
|
---|---|---|
Article Number | 03023 | |
Number of page(s) | 5 | |
Section | Computing | |
DOI | https://doi.org/10.1051/itmconf/20214003023 | |
Published online | 09 August 2021 |
Text Summarization using Extractive and Abstractive Methods
Department of Computer Engineering, Ramrao Adik Institute of Technology, India
* e-mail: saurabhvarade123@gmail.com
** e-mail: ejaaz.sayyed.common@gmail.com
*** e-mail: vaibhavinagtode1@gmail.com
**** e-mail: shilpa.shinde@rait.ac.in
Text Summarization is a process where a huge text file is converted into summarized version which will preserve the original meaning and context. The main aim of any text summarization is to provide a accurate and precise summary. One approach is to use a sentence ranking algorithm. This comes under extractive summarization. Here, a graph based ranking algorithm is used to rank the sentences in the text and then top k-scored sentences are included in the summary. The most widely used algorithm to decide the importance of any vertex in a graph based on the information retrieved from the graph is Graph Based Ranking Algorithm. TextRank is one of the most efficient ranking algorithms which is used for Web link analysis that is for measuring the importance of website pages. Another approach is abstractive summarization where a LSTM encoder decoder model is used along with attention mechanism which focuses on some important words from the input. Encoder encodes the input sequence and decoder along with attention mechanism gives the summary as the output.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.